-
1
-
-
0036344303
-
Configuration spaces of colored graphs. Dedicated to John Stallings on the occasion of his 65th birthday
-
Abrams A. (2002). Configuration spaces of colored graphs. Dedicated to John Stallings on the occasion of his 65th birthday. Geom. Dedicata 92: 185-194
-
(2002)
Geom. Dedicata
, vol.92
, pp. 185-194
-
-
Abrams, A.1
-
2
-
-
23044534453
-
Finding topology in a factory: Configuration spaces
-
2
-
Abrams A. and Ghrist R. (2002). Finding topology in a factory: configuration spaces. Am. Math. Monthly 109(2): 140-150
-
(2002)
Am. Math. Monthly
, vol.109
, pp. 140-150
-
-
Abrams, A.1
Ghrist, R.2
-
3
-
-
0036721071
-
Braid pictures for Artin groups
-
Allcock D. (2002). Braid pictures for Artin groups. Trans. AMS 354: 3455-3474
-
(2002)
Trans. AMS
, vol.354
, pp. 3455-3474
-
-
Allcock, D.1
-
4
-
-
0032551490
-
The word problem for Artin groups of FC type
-
1
-
Altobelli J. (1998). The word problem for Artin groups of FC type. J. Pure Appl. Algebra 129(1): 1-22
-
(1998)
J. Pure Appl. Algebra
, vol.129
, pp. 1-22
-
-
Altobelli, J.1
-
5
-
-
0013309185
-
Subgroups of semifree groups
-
1-4
-
Baudisch A. (1981). Subgroups of semifree groups. Acta Math. Acad. Sci. Hung. 38(1-4): 19-28
-
(1981)
Acta Math. Acad. Sci. Hung.
, vol.38
, pp. 19-28
-
-
Baudisch, A.1
-
6
-
-
39149088637
-
Quasi-isometric classification of graph manifolds groups
-
Behrstock, J., Neumann, W.: Quasi-isometric classification of graph manifolds groups. Duke Math. J.
-
Duke Math. J.
-
-
Behrstock, J.1
Neumann, W.2
-
7
-
-
25444503577
-
Three-dimensional FC Artin groups are CAT(0)
-
Bell R. (2005). Three-dimensional FC Artin groups are CAT(0). Geom. Dedicata 113: 21-53
-
(2005)
Geom. Dedicata
, vol.113
, pp. 21-53
-
-
Bell, R.1
-
8
-
-
0037658187
-
Non-positively curved aspects of Artin groups of finite type
-
Bestvina M. (1999). Non-positively curved aspects of Artin groups of finite type. Geom. Topol. 3: 269-302
-
(1999)
Geom. Topol.
, vol.3
, pp. 269-302
-
-
Bestvina, M.1
-
9
-
-
0031534568
-
Morse theory and finiteness properties for groups
-
Bestvina M. and Brady N. (1997). Morse theory and finiteness properties for groups. Invent. Math. 129: 445-470
-
(1997)
Invent. Math.
, vol.129
, pp. 445-470
-
-
Bestvina, M.1
Brady, N.2
-
10
-
-
0035578590
-
Braid groups are linear
-
2
-
Bigelow S. (2001). Braid groups are linear. J. Amer. Math. Soc. 14(2): 471-486
-
(2001)
J. Amer. Math. Soc.
, vol.14
, pp. 471-486
-
-
Bigelow, S.1
-
12
-
-
0036413274
-
Two-dimensional Artin groups with CAT(0) dimension three. Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part i (Haifa, 2000)
-
Brady N. and Crisp J. (2002). Two-dimensional Artin groups with CAT(0) dimension three. Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000). Geom. Dedicata 94: 185-214
-
(2002)
Geom. Dedicata
, vol.94
, pp. 185-214
-
-
Brady, N.1
Crisp, J.2
-
13
-
-
23044522667
-
Connectivity at infinity for right angled Artin groups
-
1
-
Brady N. and Meier J. (2001). Connectivity at infinity for right angled Artin groups. Trans. Am. Math. Soc. 353(1): 117-132
-
(2001)
Trans. Am. Math. Soc.
, vol.353
, pp. 117-132
-
-
Brady, N.1
Meier, J.2
-
14
-
-
0034361270
-
Artin groups of finite type with three generators
-
Brady T. (2000). Artin groups of finite type with three generators. Mich. Math J. 47: 313-324
-
(2000)
Mich. Math J.
, vol.47
, pp. 313-324
-
-
Brady, T.1
-
15
-
-
0034679347
-
Three-generator Artin groups of large type are biautomatic
-
Brady T. and McCammond J. (2000). Three-generator Artin groups of large type are biautomatic. J. Pure Appl. Algebra 151: 1-9
-
(2000)
J. Pure Appl. Algebra
, vol.151
, pp. 1-9
-
-
Brady, T.1
McCammond, J.2
-
16
-
-
0036415374
-
K(π, 1)'s for Artin groups of finite type
-
Brady T. and Watt C. (2002). K(π, 1)'s for Artin groups of finite type. Geom. Dedicata 94: 225-250
-
(2002)
Geom. Dedicata
, vol.94
, pp. 225-250
-
-
Brady, T.1
Watt, C.2
-
17
-
-
8844287655
-
Sign-graded posets, unimodality of W-polynomials and the Charney-Davis conjecture
-
Research Paper 9
-
Brändén, P.: Sign-graded posets, unimodality of W-polynomials and the Charney-Davis conjecture. Electron. J. Combin. 11 (2) 15, (2004/06) Research Paper 9
-
(2004)
Electron. J. Combin.
, vol.11
, Issue.2
, pp. 15
-
-
Brändén, P.1
-
19
-
-
0001890405
-
Die Fundamentalgruppe des Raumes der regulren Orbits einer endlichen komplexen Spiegelungsgruppe
-
Brieskorn E. (1971). Die Fundamentalgruppe des Raumes der regulren Orbits einer endlichen komplexen Spiegelungsgruppe. Invent. Math. 12: 57-61
-
(1971)
Invent. Math.
, vol.12
, pp. 57-61
-
-
Brieskorn, E.1
-
20
-
-
0001081986
-
Artin-gruppen und Coxeter-gruppen
-
Brieskorn E. and Saito K. (1972). Artin-gruppen und Coxeter-gruppen. Invent. Math. 17: 245-271
-
(1972)
Invent. Math.
, vol.17
, pp. 245-271
-
-
Brieskorn, E.1
Saito, K.2
-
21
-
-
0001564155
-
Artin groups of finite type are biautomatic
-
Charney R. (1992). Artin groups of finite type are biautomatic. Math. Ann.alen 292: 671-683
-
(1992)
Math. Ann.alen
, vol.292
, pp. 671-683
-
-
Charney, R.1
-
22
-
-
0001473908
-
Geodesic automation and growth functions for Artin groups of finite type
-
Charney R. (1995). Geodesic automation and growth functions for Artin groups of finite type. Math. Ann. 301: 307-324
-
(1995)
Math. Ann.
, vol.301
, pp. 307-324
-
-
Charney, R.1
-
23
-
-
4644295055
-
The Deligne complex for the four-strand braid group
-
10
-
Charney R. (2004). The Deligne complex for the four-strand braid group. Trans. Am. Math. Soc. 356(10): 3881-3897
-
(2004)
Trans. Am. Math. Soc.
, vol.356
, pp. 3881-3897
-
-
Charney, R.1
-
24
-
-
23244454085
-
Automorphism groups of some affine and finite type Artin groups
-
2-3
-
Charney R. and Crisp J. (2005). Automorphism groups of some affine and finite type Artin groups. Math. Res. Lett. 12(2-3): 321-333
-
(2005)
Math. Res. Lett.
, vol.12
, pp. 321-333
-
-
Charney, R.1
Crisp, J.2
-
26
-
-
84967773645
-
The K(π,1)-problem for hyperplane complements associated to infinite reflection groups
-
Charney R. and Davis M. (1995). The K(π,1)-problem for hyperplane complements associated to infinite reflection groups. J. Am. Math. Soc. 8: 597-627
-
(1995)
J. Am. Math. Soc.
, vol.8
, pp. 597-627
-
-
Charney, R.1
Davis, M.2
-
27
-
-
0001282822
-
Finite K(π,1)'s for Artin groups
-
Ann. of Math. Stud. vol. 138
-
Charney R. and Davis M. (1995). Finite K(π,1)'s for Artin groups. In: Quinn, F. (eds) Prospects in Topology., pp 110-124. Ann. of Math. Stud., vol. 138
-
(1995)
Prospects in Topology.
, pp. 110-124
-
-
Charney, R.1
Davis, M.2
Quinn, F.3
-
28
-
-
84972548954
-
The Euler characteristic of a nonpositively curved, piecewise Euclidean manifold
-
1
-
Charney R. and Davis M. (1995). The Euler characteristic of a nonpositively curved, piecewise Euclidean manifold. Pacific J. Math. 171(1): 117-137
-
(1995)
Pacific J. Math.
, vol.171
, pp. 117-137
-
-
Charney, R.1
Davis, M.2
-
29
-
-
0042475503
-
The K(π,1) conjecture for the affine braid groups
-
3
-
Charney R. and Peifer D. (2003). The K(π,1) conjecture for the affine braid groups. Comment. Math. Helv. 78(3): 584-600
-
(2003)
Comment. Math. Helv.
, vol.78
, pp. 584-600
-
-
Charney, R.1
Peifer, D.2
-
30
-
-
0039496988
-
Locally non-spherical Artin groups
-
1
-
Chermak A. (1998). Locally non-spherical Artin groups. J. Algebra 200(1): 56-98
-
(1998)
J. Algebra
, vol.200
, pp. 56-98
-
-
Chermak, A.1
-
31
-
-
0036457578
-
Linearity of Artin groups of finite type
-
Cohen A. and Wales D. (2002). Linearity of Artin groups of finite type. Isreal J. of Math. 131: 101-123
-
(2002)
Isreal J. of Math.
, vol.131
, pp. 101-123
-
-
Cohen, A.1
Wales, D.2
-
32
-
-
0035624360
-
The solution to a conjecture of Tits on the subgroup generated by the squares of the generators of an Artin group
-
1
-
Crisp J. and Paris L. (2001). The solution to a conjecture of Tits on the subgroup generated by the squares of the generators of an Artin group. Invent. Math. 145(1): 19-36
-
(2001)
Invent. Math.
, vol.145
, pp. 19-36
-
-
Crisp, J.1
Paris, L.2
-
33
-
-
33750514881
-
Embeddings of graph braid and surface groups in right-angled Artin groups and braid groups
-
Crisp J. and Wiest B. (2004). Embeddings of graph braid and surface groups in right-angled Artin groups and braid groups. Algebr. Geom. Topol. 4: 439-472
-
(2004)
Algebr. Geom. Topol.
, vol.4
, pp. 439-472
-
-
Crisp, J.1
Wiest, B.2
-
34
-
-
0034179001
-
Spaces with nonpositive curvature and their ideal boundaries
-
Croke C. and Kleiner B. (2000). Spaces with nonpositive curvature and their ideal boundaries. Topology 39: 549-556
-
(2000)
Topology
, vol.39
, pp. 549-556
-
-
Croke, C.1
Kleiner, B.2
-
35
-
-
34250125329
-
Moduli of graphs and automorphisms of free groups
-
Culler M. and Vogtmann K. (1986). Moduli of graphs and automorphisms of free groups. Invent. Math. 84: 91-119
-
(1986)
Invent. Math.
, vol.84
, pp. 91-119
-
-
Culler, M.1
Vogtmann, K.2
-
36
-
-
0001438960
-
Groups generated by reflections and aspherical manifolds not covered by Euclidean space
-
2
-
Davis M. (1983). Groups generated by reflections and aspherical manifolds not covered by Euclidean space. Ann. Math. (2) 117(2): 293-324
-
(1983)
Ann. Math. (2)
, vol.117
, pp. 293-324
-
-
Davis, M.1
-
37
-
-
0000056539
-
The cohomology of a Coxeter group with group ring coefficients
-
2
-
Davis M. (1998). The cohomology of a Coxeter group with group ring coefficients. Duke Math. J. 91(2): 297-314
-
(1998)
Duke Math. J.
, vol.91
, pp. 297-314
-
-
Davis, M.1
-
38
-
-
0034634140
-
Right-angled Artin groups are commensurable with right-angled Coxeter groups
-
3
-
Davis M. and Januszkiewicz T. (2000). Right-angled Artin groups are commensurable with right-angled Coxeter groups. J. Pure Appl. Algebra 153(3): 229-235
-
(2000)
J. Pure Appl. Algebra
, vol.153
, pp. 229-235
-
-
Davis, M.1
Januszkiewicz, T.2
-
40
-
-
0036946193
-
The topology at infinity of Coxeter groups and buildings
-
4
-
Davis M. and Meier J. (2002). The topology at infinity of Coxeter groups and buildings. Comment. Math. Helv. 77(4): 746-766
-
(2002)
Comment. Math. Helv.
, vol.77
, pp. 746-766
-
-
Davis, M.1
Meier, J.2
-
41
-
-
0011040168
-
2-homology of right-angled Coxeter groups
-
2-homology of right-angled Coxeter groups. Geom. Topol. 5: 7-74
-
(2001)
Geom. Topol.
, vol.5
, pp. 7-74
-
-
Davis, M.1
Okun, B.2
-
42
-
-
0000650424
-
Les immeubles des groupes de tresses généralisés
-
Deligne P. (1972). Les immeubles des groupes de tresses généralisés. Invent. Math. 17: 273-302
-
(1972)
Invent. Math.
, vol.17
, pp. 273-302
-
-
Deligne, P.1
-
43
-
-
33750951232
-
Presentations duales des groupes de tresses de type affine Ã
-
1
-
Digne F. (2006). Presentations duales des groupes de tresses de type affine Ã. Comment. Math. Helv. 81(1): 23-47
-
(2006)
Comment. Math. Helv.
, vol.81
, pp. 23-47
-
-
Digne, F.1
-
44
-
-
38249035771
-
Graph groups, coherence, and three-manifolds
-
2
-
Droms C. (1987). Graph groups, coherence and three-manifolds. J. Algebra 106(2): 484-489
-
(1987)
J. Algebra
, vol.106
, pp. 484-489
-
-
Droms, C.1
-
45
-
-
84968466454
-
Isomorphisms of graph groups
-
3
-
Droms C. (1987). Isomorphisms of graph groups. Proc. Am. Math. Soc. 100(3): 407-408
-
(1987)
Proc. Am. Math. Soc.
, vol.100
, pp. 407-408
-
-
Droms, C.1
-
46
-
-
0000596456
-
Subgroups of graph groups
-
2
-
Droms C. (1987). Subgroups of graph groups. J. Algebra 110(2): 519-522
-
(1987)
J. Algebra
, vol.110
, pp. 519-522
-
-
Droms, C.1
-
48
-
-
0003848050
-
-
Jones and Bartlett Publishers Boston, MA
-
Epstein D., Cannon J., Holt D., Levy S., Paterson M. and Thurston W. (1992). Word Processing in Groups. Jones and Bartlett Publishers, Boston, MA
-
(1992)
Word Processing in Groups
-
-
Epstein, D.1
Cannon, J.2
Holt, D.3
Levy, S.4
Paterson, M.5
Thurston, W.6
-
49
-
-
34547189305
-
Discrete Morse theory and graph braid groups
-
Farley D. and Sabalka L. (2005). Discrete Morse theory and graph braid groups. Algebr. Geom. Topol. 5: 1075-1109
-
(2005)
Algebr. Geom. Topol.
, vol.5
, pp. 1075-1109
-
-
Farley, D.1
Sabalka, L.2
-
50
-
-
0001543830
-
The automorphism group of a free group is not linear
-
2
-
Formanek E. and Procesi C. (1992). The automorphism group of a free group is not linear. J. Algebra 149(2): 494-499
-
(1992)
J. Algebra
, vol.149
, pp. 494-499
-
-
Formanek, E.1
Procesi, C.2
-
51
-
-
0001232942
-
The braid groups
-
Fox R. and Neuwirth L. (1962). The braid groups. Math. Scand. 10: 119-126
-
(1962)
Math. Scand.
, vol.10
, pp. 119-126
-
-
Fox, R.1
Neuwirth, L.2
-
52
-
-
0039349071
-
The braid group and other groups
-
Garside F. (1969). The braid group and other groups. Q. J. Math. Oxford 20: 235-254
-
(1969)
Q. J. Math. Oxford
, vol.20
, pp. 235-254
-
-
Garside, F.1
-
53
-
-
33846819241
-
Configuration spaces and braid groups on graphs in robotics, knots, braids, and mapping class groups-papers dedicated to Joan S. Birman
-
New York, 1998 Amer. Math. Soc., Providence, RI
-
Ghrist, R.: Configuration Spaces and Braid Groups on Graphs in Robotics, Knots, Braids, and Mapping Class Groups-Papers Dedicated to Joan S. Birman (New York, 1998). AMS/IP Stud. Adv. Math., vol. (24). pp 29-40. Amer. Math. Soc., Providence, RI (2001)
-
(2001)
AMS/IP Stud. Adv. Math.
, vol.24
, pp. 29-40
-
-
Ghrist, R.1
-
54
-
-
33846842337
-
The geometry and topology of reconfiguration
-
Ghrist R. and Peterson V. (2007). The geometry and topology of reconfiguration. Adv. Appl. Math. 38: 302-323
-
(2007)
Adv. Appl. Math.
, vol.38
, pp. 302-323
-
-
Ghrist, R.1
Peterson, V.2
-
55
-
-
34547157209
-
Nonpositive curvature and Pareto-optimal coordination of robots, to appear in SIAM J
-
5
-
Ghrist R. and LaValle S. (2006). Nonpositive curvature and Pareto-optimal coordination of robots, to appear in SIAM J. Control Optim. 45(5): 1697-1713
-
(2006)
Control Optim.
, vol.45
, pp. 1697-1713
-
-
Ghrist, R.1
Lavalle, S.2
-
57
-
-
0003195390
-
Hyperbolic groups
-
Math. Sci. Res. Inst. Publ., 8, Springer, New York
-
Gromov M. Hyperbolic Groups. Essays in Group Theory, 75-263, Math. Sci. Res. Inst. Publ., 8, Springer, New York (1987)
-
(1987)
Essays in Group Theory
, pp. 75-263
-
-
Gromov, M.1
-
58
-
-
0001010744
-
Algorithms and geometry for graph products of groups
-
1
-
Hermiller S. and Meier J. (1995). Algorithms and geometry for graph products of groups. J. Algebra 171(1): 230-257
-
(1995)
J. Algebra
, vol.171
, pp. 230-257
-
-
Hermiller, S.1
Meier, J.2
-
59
-
-
0000031043
-
On linear and residual properties of graph products
-
2
-
Hsu T. and Wise D. (1999). On linear and residual properties of graph products. Mich. Math. J. 46(2): 251-259
-
(1999)
Mich. Math. J.
, vol.46
, pp. 251-259
-
-
Hsu, T.1
Wise, D.2
-
60
-
-
0036022784
-
Separating quasiconvex subgroups of right-angled Artin groups
-
3
-
Hsu T. and Wise D. (2002). Separating quasiconvex subgroups of right-angled Artin groups. Math. Z. 240(3): 521-548
-
(2002)
Math. Z.
, vol.240
, pp. 521-548
-
-
Hsu, T.1
Wise, D.2
-
61
-
-
26444454560
-
The cohomology of right-angled Artin groups with group ring coefficients
-
5
-
Jensen C. and Meier J. (2005). The cohomology of right-angled Artin groups with group ring coefficients. Bull. Lond. Math. Soc. 37(5): 711-718
-
(2005)
Bull. Lond. Math. Soc.
, vol.37
, pp. 711-718
-
-
Jensen, C.1
Meier, J.2
-
62
-
-
0036000536
-
Braid groups are linear
-
1
-
Krammer D. (2002). Braid groups are linear. Ann. Math. (2) 155(1): 131-156
-
(2002)
Ann. Math. (2)
, vol.155
, pp. 131-156
-
-
Krammer, D.1
-
63
-
-
0013308204
-
A generating set for the automorphism group of a graph group
-
Laurence M. (1995). A generating set for the automorphism group of a graph group. J. Lond. Math. Soc. (2) 52: 318-334
-
(1995)
J. Lond. Math. Soc. (2)
, vol.52
, pp. 318-334
-
-
Laurence, M.1
-
66
-
-
0002363728
-
Higher generation subgroup sets and the ∑-invariants of graph groups
-
1
-
Meier J., Meinert H. and VanWyk L. (1998). Higher generation subgroup sets and the ∑-invariants of graph groups. Comment. Math. Helv. 73(1): 22-44
-
(1998)
Comment. Math. Helv.
, vol.73
, pp. 22-44
-
-
Meier, J.1
Meinert, H.2
Vanwyk, L.3
-
67
-
-
0000960767
-
The Bieri-Neumann-Strebel invariants for graph groups
-
2
-
Meier J. and VanWyk L. (1995). The Bieri-Neumann-Strebel invariants for graph groups. Proc. Lond. Math. Soc. (3) 71(2): 263-280
-
(1995)
Proc. Lond. Math. Soc. (3)
, vol.71
, pp. 263-280
-
-
Meier, J.1
Vanwyk, L.2
-
68
-
-
2942677183
-
Subgroup separability of graphs of abelian groups
-
7
-
Metaftsis V. and Raptis E. (2004). Subgroup separability of graphs of abelian groups. Proc. Am. Math. Soc. 132(7): 1873-1884
-
(2004)
Proc. Am. Math. Soc.
, vol.132
, pp. 1873-1884
-
-
Metaftsis, V.1
Raptis, E.2
-
70
-
-
0032058777
-
The geometry of cube complexes and the complexity of their fundamental groups
-
Niblo G. and Reeves L. (1998). The geometry of cube complexes and the complexity of their fundamental groups. Topology 37: 621-633
-
(1998)
Topology
, vol.37
, pp. 621-633
-
-
Niblo, G.1
Reeves, L.2
-
71
-
-
32544449149
-
Algebraic invariants for right-angled Artin groups
-
3
-
Papadima S. and Suciu A. (2006). Algebraic invariants for right-angled Artin groups. Math. Ann. 334(3): 533-555
-
(2006)
Math. Ann.
, vol.334
, pp. 533-555
-
-
Papadima, S.1
Suciu, A.2
-
72
-
-
0030575201
-
Artin groups of extra-large type are biautomatic
-
Peifer D. (1996). Artin groups of extra-large type are biautomatic. J. Pure Appl. Algebra 110: 15-56
-
(1996)
J. Pure Appl. Algebra
, vol.110
, pp. 15-56
-
-
Peifer, D.1
-
73
-
-
14544283615
-
On the Charney-Davis and Neggers-Stanley conjectures
-
2
-
Reiner V. and Welker V. (2005). On the Charney-Davis and Neggers-Stanley conjectures. J. Combin. Theory Ser. A 109(2): 247-280
-
(2005)
J. Combin. Theory Ser. A
, vol.109
, pp. 247-280
-
-
Reiner, V.1
Welker, V.2
-
74
-
-
34547193862
-
Embedding right-angled Artin groups into graph braid groups
-
Sabalka, L.: Embedding right-angled Artin groups into graph braid groups. Geom Dedicata
-
Geom Dedicata
-
-
Sabalka, L.1
-
75
-
-
26444586764
-
The Tits alternative for CAT(0) cubical complexes
-
5
-
Sageev M. and Wise D. (2005). The Tits alternative for CAT(0) cubical complexes. Bull. Lond Math. Soc. 37(5): 706-710
-
(2005)
Bull. Lond Math. Soc.
, vol.37
, pp. 706-710
-
-
Sageev, M.1
Wise, D.2
-
77
-
-
38249025552
-
Automorphisms of graph groups
-
Servatius H. (1989). Automorphisms of graph groups. J. Algebra 126: 34-60
-
(1989)
J. Algebra
, vol.126
, pp. 34-60
-
-
Servatius, H.1
-
78
-
-
77951149955
-
Right-angled mock reflection and mock Artin groups
-
to appear
-
Scott, R.: Right-angled mock reflection and mock Artin groups. Trans. Am. Math. Soc. to appear
-
Trans. Am. Math. Soc.
-
-
Scott, R.1
-
79
-
-
0001153052
-
Graph groups are biautomatic
-
3
-
VanWyk L. (1994). Graph groups are biautomatic. J. Pure Appl. Algebra 94(3): 341-352
-
(1994)
J. Pure Appl. Algebra
, vol.94
, pp. 341-352
-
-
Vanwyk, L.1
-
80
-
-
2642535810
-
Discrete linear groups that are generated by reflections
-
Vinberg E. (1971). Discrete linear groups that are generated by reflections. Izv. Akad. Nauk SSSR Ser. Mat. 35: 1072-1112
-
(1971)
Izv. Akad. Nauk SSSR Ser. Mat.
, vol.35
, pp. 1072-1112
-
-
Vinberg, E.1
-
81
-
-
21644456225
-
A CAT(0) group with uncountably many distinct boundaries
-
2
-
Wilson J. (2005). A CAT(0) group with uncountably many distinct boundaries. J. Group Theory 8(2): 229-238
-
(2005)
J. Group Theory
, vol.8
, pp. 229-238
-
-
Wilson, J.1
|