-
2
-
-
0013309185
-
Subgroups of semifree groups
-
[Bau81]
-
[Bau81] A. Baudisch. Subgroups of semifree groups. Acta Math. Acad. Sci. Hungar. 38(1-4):19-28, 1981
-
(1981)
Acta Math. Acad. Sci. Hungar.
, vol.38
, Issue.1-4
, pp. 19-28
-
-
Baudisch, A.1
-
3
-
-
0031534568
-
Morse theory and finiteness properties of groups
-
[BB97]
-
[BB97] Mladen Bestvina and Noel Brady. Morse theory and finiteness properties of groups. Invent. Math. 129(3):445-470, 1997
-
(1997)
Invent. Math.
, vol.129
, Issue.3
, pp. 445-470
-
-
Bestvina, M.1
Brady, N.2
-
5
-
-
84974410214
-
A note on groups with separable finitely generated subgroups
-
[BKS87]
-
[BKS87] R.G. Burns, A. Karrass, and D. Solitar. A note on groups with separable finitely generated subgroups. Bull. Austral. Math. Soc. 36(1): 153-160, 1987
-
(1987)
Bull. Austral. Math. Soc.
, vol.36
, Issue.1
, pp. 153-160
-
-
Burns, R.G.1
Karrass, A.2
Solitar, D.3
-
6
-
-
0001180769
-
An application of universal algebra in group theory
-
[BN74]
-
[BN74] Andreas Blass and Peter M. Neumann. An application of universal algebra in group theory. Michigan Math. J. 21:167-169, 1974
-
(1974)
Michigan Math. J.
, vol.21
, pp. 167-169
-
-
Blass, A.1
Neumann, P.M.2
-
7
-
-
38249035771
-
Graph groups, coherence, and three-manifolds
-
[Dro87a]
-
[Dro87a] Carl Droms. Graph groups, coherence, and three-manifolds. J. Algebra 106(2):484-489, 1987
-
(1987)
J. Algebra
, vol.106
, Issue.2
, pp. 484-489
-
-
Droms, C.1
-
8
-
-
84968466454
-
Isomorphisms of graph groups
-
[Dro87b]
-
[Dro87b] Carl Droms. Isomorphisms of graph groups. Proc. Amer. Math. Soc. 100(3):407-408, 1987
-
(1987)
Proc. Amer. Math. Soc.
, vol.100
, Issue.3
, pp. 407-408
-
-
Droms, C.1
-
9
-
-
0000596456
-
Subgroups of graph groups
-
[Dro87c]
-
[Dro87c] Carl Droms. Subgroups of graph groups. J. Algebra 110(2):519-522, 1987
-
(1987)
J. Algebra
, vol.110
, Issue.2
, pp. 519-522
-
-
Droms, C.1
-
10
-
-
0003633814
-
-
[Gre90] PhD thesis, University of Leeds
-
[Gre90] Elisabeth R. Green. Graph Products of Groups. PhD thesis, University of Leeds, 1990
-
(1990)
Graph Products of Groups
-
-
Green, E.R.1
-
11
-
-
84968500686
-
Coset representations in free groups
-
[Hal49]
-
[Hal49] Marshall Hall, Jr. Coset representations in free groups. Trans. Amer. Math. Soc. 67:421-432, 1949
-
(1949)
Trans. Amer. Math. Soc.
, vol.67
, pp. 421-432
-
-
Hall M., Jr.1
-
12
-
-
0001010744
-
Algorithms and geometry for graph products of groups
-
[HM95]
-
[HM95] Susan Hermitler and John Meier. Algorithms and geometry for graph products of groups. J. Algebra 171(1):230-257, 1995
-
(1995)
J. Algebra
, vol.171
, Issue.1
, pp. 230-257
-
-
Hermitler, S.1
Meier, J.2
-
13
-
-
0013199087
-
On representations of Artin groups and the Tits conjecture
-
[Hum94]
-
[Hum94] S.P. Humphries. On representations of Artin groups and the Tits conjecture. J. Algebra 169:847-862, 1994
-
(1994)
J. Algebra
, vol.169
, pp. 847-862
-
-
Humphries, S.P.1
-
14
-
-
0000031043
-
On linear and residual properties of graph products
-
[HW99]
-
[HW99] Tim Hsu and Daniel T. Wise. On linear and residual properties of graph products. Michigan Math. J. 46(2):251-259, 1999
-
(1999)
Michigan Math. J.
, vol.46
, Issue.2
, pp. 251-259
-
-
Hsu, T.1
Wise, D.T.2
-
15
-
-
0013308204
-
A generating set for the automorphism group of a graph group
-
[Lau95]
-
[Lau95] Michael R. Laurence. A generating set for the automorphism group of a graph group. J. London Math. Soc. (2) 52(2):318-334, 1995
-
(1995)
J. London Math. Soc. (2)
, vol.52
, Issue.2
, pp. 318-334
-
-
Laurence, M.R.1
-
17
-
-
0000960767
-
The Bieri-Neumann-Strebel invariants for graph groups
-
[MV95]
-
[MV95] John Meier and Leonard VanWyk. The Bieri-Neumann-Strebel invariants for graph groups. Proc. London Math. Soc. (3) 71(2):263-280, 1995
-
(1995)
Proc. London Math. Soc. (3)
, vol.71
, Issue.2
, pp. 263-280
-
-
Meier, J.1
VanWyk, L.2
-
18
-
-
0032058777
-
The geometry of cube complexes and the complexity of their fundamental groups
-
[NR98]
-
[NR98] G.A. Niblo and L. D. Reeves. The geometry of cube complexes and the complexity of their fundamental groups. Topology 37(3):621-633, 1998
-
(1998)
Topology
, vol.37
, Issue.3
, pp. 621-633
-
-
Niblo, G.A.1
Reeves, L.D.2
-
19
-
-
0013298909
-
Subgroup separability, knot groups and graph manifolds
-
[NW]
-
[NW] Graham A. Niblo and Daniel T. Wise. Subgroup separability, knot groups and graph manifolds. Proc. Amer. Math. Soc.
-
Proc. Amer. Math. Soc.
-
-
Niblo, G.A.1
Wise, D.T.2
-
20
-
-
0013267393
-
The engulfing property for 3-manifolds
-
[NW98] In The Epstein birthday schrift, (Electronic)
-
[NW98] Graham A. Niblo and Daniel T. Wise. The engulfing property for 3-manifolds. In The Epstein birthday schrift, pages 413-4 18 (electronic). Geom. Topol., Coventry, 1998
-
(1998)
Geom. Topol. Coventry
, pp. 413-418
-
-
Niblo, G.A.1
Wise, D.T.2
-
22
-
-
84959755345
-
Subgroups of surface groups are almost geometric
-
[Sco78]
-
[Sco78] Peter Scott. Subgroups of surface groups are almost geometric. J. London Math. Soc. (2) 17(3):555-565, 1978
-
(1978)
J. London Math. Soc. (2)
, vol.17
, Issue.3
, pp. 555-565
-
-
Scott, P.1
-
23
-
-
38249025552
-
Automorphisms of graph groups
-
[Ser89]
-
[Ser89] Herman Servatius. Automorphisms of graph groups. J. Algebra 126(1):34-60, 1989
-
(1989)
J. Algebra
, vol.126
, Issue.1
, pp. 34-60
-
-
Servatius, H.1
-
24
-
-
0001464286
-
Quasiconvexity and a theorem of Howson's
-
[Sho91] (Trieste, 1990), World Sci. Publishing, River Edge, NJ
-
[Sho91 ] Hamish Short. Quasiconvexity and a theorem of Howson's. In Group theory from a geometrical viewpoint (Trieste, 1990), pages 168-176. World Sci. Publishing, River Edge, NJ, 1991
-
(1991)
Group Theory from a Geometrical Viewpoint
, pp. 168-176
-
-
Short, H.1
-
25
-
-
0000354326
-
Topological methods in group theory
-
[SW79] Cambridge Univ. Press, Cambridge
-
[SW79] Peter Scott and Terry Wall. Topological methods in group theory. In Homological group theory (Proc. Sympos., Durham, 1977), volume 36 of London Math. Soc. Lecture Note Ser., pages 137-203. Cambridge Univ. Press, Cambridge, 1979
-
(1979)
Homological Group Theory (Proc. Sympos., Durham, 1977), Volume 36 of London Math. Soc. Lecture Note Ser.
, vol.36
, pp. 137-203
-
-
Scott, P.1
Wall, T.2
-
26
-
-
0001153052
-
Graph groups are biautomatic
-
[VW94]
-
[VW94] Leonard Van Wyk. Graph groups are biautomatic. J. Pure Appl. Algebra 94(3):341-352, 1994
-
(1994)
J. Pure Appl. Algebra
, vol.94
, Issue.3
, pp. 341-352
-
-
Van Wyk, L.1
|