-
1
-
-
0003363438
-
Neutral Thermochemical Data
-
Linstrom P. J, Mallard, W. G, Eds, National Institute of Standards and Technology: Gaithersburg, MD, June
-
Afeefy, H. Y.; Liebman, J. F.; Stein, S. E. Neutral Thermochemical Data. In NIST Chemistry WebBook, NIST Standard Reference Database, Number 69; Linstrom P. J., Mallard, W. G., Eds.; National Institute of Standards and Technology: Gaithersburg, MD, June 2005 (http://webbook.nist.gov).
-
(2005)
NIST Chemistry WebBook, NIST Standard Reference Database, Number 69
-
-
Afeefy, H.Y.1
Liebman, J.F.2
Stein, S.E.3
-
2
-
-
33846702130
-
-
Release 11; Johnson, R. D, III, Ed, National Institute of Standards and Technology: Gaithersburg, MD, May
-
NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101 Release 11; Johnson, R. D., III, Ed.; National Institute of Standards and Technology: Gaithersburg, MD, May 2005 (http://srdata.nist.gov/cccbdb).
-
(2005)
NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101
-
-
-
3
-
-
0003944545
-
-
For a discussion of methods used to determine bond energies, see:, 4th ed, Harper Collins Row: New York
-
For a discussion of methods used to determine bond energies, see: Huheey, J. E.; Keiter, E. A.; Keiter, R. L. Inorganic Chemistry: Principles of Structure and Reactivity, 4th ed.; Harper Collins Row: New York, 1983.
-
(1983)
Inorganic Chemistry: Principles of Structure and Reactivity
-
-
Huheey, J.E.1
Keiter, E.A.2
Keiter, R.L.3
-
4
-
-
0003412412
-
-
For examples widely used by organic chemists, see: a, 5th ed, Wiley: New York
-
For examples widely used by organic chemists, see: (a) Smith, M. B.; March, J. March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 5th ed.; Wiley: New York, 2000; p 24.
-
(2000)
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure
, pp. 24
-
-
Smith, M.B.1
March, J.2
-
9
-
-
23044443893
-
-
For a thorough discussion of the method, see:, University Science Books: Sausalito, CA
-
For a thorough discussion of the method, see: Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic Chemistry; University Science Books: Sausalito, CA, 2005; pp 79-81.
-
(2005)
Modern Physical Organic Chemistry
, pp. 79-81
-
-
Anslyn, E.V.1
Dougherty, D.A.2
-
17
-
-
24944548004
-
-
Sabbe, M. K.; Saeys, M.; Reyniers, M.-F.; Marin, G. B.; Speybroeck, V. V.; Waroquier, M. J. Phys. Chem. A 2005, 109, 7466.
-
(2005)
J. Phys. Chem. A
, vol.109
, pp. 7466
-
-
Sabbe, M.K.1
Saeys, M.2
Reyniers, M.-F.3
Marin, G.B.4
Speybroeck, V.V.5
Waroquier, M.6
-
18
-
-
0041401966
-
-
Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J. Chem. Phys. 1991, 94, 7221.
-
(1991)
J. Chem. Phys
, vol.94
, pp. 7221
-
-
Curtiss, L.A.1
Raghavachari, K.2
Trucks, G.W.3
Pople, J.A.4
-
19
-
-
36449008258
-
-
Curtiss, L. A.; Kock, L. D.; Pople, J. A. J. Chem. Phys. 1991, 95, 4040.
-
(1991)
J. Chem. Phys
, vol.95
, pp. 4040
-
-
Curtiss, L.A.1
Kock, L.D.2
Pople, J.A.3
-
20
-
-
0000109748
-
-
Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A. J. Chem. Phys. 1997, 106, 1063.
-
(1997)
J. Chem. Phys
, vol.106
, pp. 1063
-
-
Curtiss, L.A.1
Raghavachari, K.2
Redfern, P.C.3
Pople, J.A.4
-
23
-
-
0000026723
-
-
(b) Raghavachari, K.; Stefanov, B. B.; Curtiss, L. A. J. Chem. Phys. 1997, 106, 6764.
-
(1997)
J. Chem. Phys
, vol.106
, pp. 6764
-
-
Raghavachari, K.1
Stefanov, B.B.2
Curtiss, L.A.3
-
25
-
-
0034422658
-
-
Curtiss, L. A.; Redfern, P. C.; Frurip, D. J. Rev. Comput. Chem. 2000, 15, 147.
-
(2000)
Rev. Comput. Chem
, vol.15
, pp. 147
-
-
Curtiss, L.A.1
Redfern, P.C.2
Frurip, D.J.3
-
26
-
-
0042878562
-
-
Chen, P. C.; Chieh, Y. C.; Tzeng, S. C. Theochem 2003, 634, 215.
-
(2003)
Theochem
, vol.634
, pp. 215
-
-
Chen, P.C.1
Chieh, Y.C.2
Tzeng, S.C.3
-
27
-
-
0032761306
-
-
(a) Notario, R.; Castaño, O.; Abboud, J.-L. M.; Gomperts, R.; Frutos, L.-M.; Palmeira, R. J. Org. Chem. 1999, 64, 9011.
-
(1999)
J. Org. Chem
, vol.64
, pp. 9011
-
-
Notario, R.1
Castaño, O.2
Abboud, J.-L.M.3
Gomperts, R.4
Frutos, L.-M.5
Palmeira, R.6
-
28
-
-
0032761561
-
-
(b) Castaño, O.; Notario, R.; Abboud, J.-L. M.; Gomperts, R.; Palmeira R.; Frutos, L.-M. J. Org. Chem. 1999, 64, 9015.
-
(1999)
J. Org. Chem
, vol.64
, pp. 9015
-
-
Castaño, O.1
Notario, R.2
Abboud, J.-L.M.3
Gomperts, R.4
Palmeira, R.5
Frutos, L.-M.6
-
29
-
-
0034647559
-
-
(c) Notario, R.; Castaño, O.; Gomperts, R.; Frutos, L.-M.; Palmeira, R. J. Org. Chem. 2000, 65, 4298.
-
(2000)
J. Org. Chem
, vol.65
, pp. 4298
-
-
Notario, R.1
Castaño, O.2
Gomperts, R.3
Frutos, L.-M.4
Palmeira, R.5
-
30
-
-
0242667840
-
-
Saeys, M.; Reyniers, M.-F.; Marin, G. B.; Sypebroeck, V. V.; Waroquier, M. J. Phys. Chem. A 2030, 107, 9147.
-
J. Phys. Chem. A
, vol.2030
, Issue.107
, pp. 9147
-
-
Saeys, M.1
Reyniers, M.-F.2
Marin, G.B.3
Sypebroeck, V.V.4
Waroquier, M.5
-
31
-
-
0034245696
-
-
Haworth, N.; Smith, M. H.; Backsay, G. B.; Mackie, J. C. J. Phys. Chem. A 2000, 104, 7600.
-
(2000)
J. Phys. Chem. A
, vol.104
, pp. 7600
-
-
Haworth, N.1
Smith, M.H.2
Backsay, G.B.3
Mackie, J.C.4
-
33
-
-
34547128681
-
-
Frisch, M. J. et. al. Gaussian 98, Revision A.11.3; Gaussian, Inc.: Pittsburgh, 1998. Complete citation is found in Supporting Information.
-
Frisch, M. J. et. al. Gaussian 98, Revision A.11.3; Gaussian, Inc.: Pittsburgh, 1998. Complete citation is found in Supporting Information.
-
-
-
-
34
-
-
0012154673
-
-
Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Rassolov, V.; Pople, J. A. J. Chem. Phys. 1998, 109, 7764.
-
(1998)
J. Chem. Phys
, vol.109
, pp. 7764
-
-
Curtiss, L.A.1
Raghavachari, K.2
Redfern, P.C.3
Rassolov, V.4
Pople, J.A.5
-
36
-
-
0038269037
-
-
(b) Ochterski, J. W.; Petersson, G. A.; Montgomery, J. A. J. Chem. Phys. 1996, 104, 2598.
-
(1996)
J. Chem. Phys
, vol.104
, pp. 2598
-
-
Ochterski, J.W.1
Petersson, G.A.2
Montgomery, J.A.3
-
37
-
-
0000340764
-
-
(c) Montgomery, J. A.; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A. J. Chem. Phys. 1999, 110, 2822.
-
(1999)
J. Chem. Phys
, vol.110
, pp. 2822
-
-
Montgomery, J.A.1
Frisch, M.J.2
Ochterski, J.W.3
Petersson, G.A.4
-
38
-
-
0006012501
-
-
(d) Montgomery, J. A.; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A. J. Chem. Phys. 2000, 112, 6532.
-
(2000)
J. Chem. Phys
, vol.112
, pp. 6532
-
-
Montgomery, J.A.1
Frisch, M.J.2
Ochterski, J.W.3
Petersson, G.A.4
-
39
-
-
0345491105
-
-
(a) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
-
(1988)
Phys. Rev. B
, vol.37
, pp. 785
-
-
Lee, C.1
Yang, W.2
Parr, R.G.3
-
42
-
-
36449002507
-
-
Curtiss, L. A.; Raghavachari, K.; Pople, J. A. J. Chem. Phys. 1993, 98, 1293.
-
(1993)
J. Chem. Phys
, vol.98
, pp. 1293
-
-
Curtiss, L.A.1
Raghavachari, K.2
Pople, J.A.3
-
43
-
-
0000543185
-
-
Baboul, A. G.; Curtiss, L. A.; Redfern, P. C.; Raghavachari, K. J. Chem. Phys. 1999, 110, 7650.
-
(1999)
J. Chem. Phys
, vol.110
, pp. 7650
-
-
Baboul, A.G.1
Curtiss, L.A.2
Redfern, P.C.3
Raghavachari, K.4
-
44
-
-
0001586585
-
-
Curtiss, L. A.; Redfern, P. C.; Raghavachari, K.; Rassolov, V.; Pople, J. A. J. Chem. Phys. 1999, 110, 4703.
-
(1999)
J. Chem. Phys
, vol.110
, pp. 4703
-
-
Curtiss, L.A.1
Redfern, P.C.2
Raghavachari, K.3
Rassolov, V.4
Pople, J.A.5
-
45
-
-
0000215083
-
-
Montgomery, J. A.; Ochterski, J. W.; Petersson, G. A. J. Chem. Phys. 1994, 101, 5900.
-
(1994)
J. Chem. Phys
, vol.101
, pp. 5900
-
-
Montgomery, J.A.1
Ochterski, J.W.2
Petersson, G.A.3
-
46
-
-
0000645065
-
-
Raghavachari, K.; Stefanov, B. B.; Curtiss, L. A. Mol. Phys. 1997, 91, 555.
-
(1997)
Mol. Phys
, vol.91
, pp. 555
-
-
Raghavachari, K.1
Stefanov, B.B.2
Curtiss, L.A.3
-
47
-
-
34547102036
-
-
Reference 11, page 271
-
Reference 11, page 271.
-
-
-
-
48
-
-
34547109437
-
-
There are actually a number of potential bond separation equations that can be written for many of the compounds that we have examined, some of these employing more than two heavy atoms. What is critical is that the molecules selected have well-defined experimental energies
-
There are actually a number of potential bond separation equations that can be written for many of the compounds that we have examined, some of these employing more than two heavy atoms. What is critical is that the molecules selected have well-defined experimental energies.
-
-
-
-
49
-
-
0011562075
-
-
George, P.; Trachtman, M.; Bock, C. W.; Brett, A. M. Tetrahedron 1976, 32, 317.
-
(1976)
Tetrahedron
, vol.32
, pp. 317
-
-
George, P.1
Trachtman, M.2
Bock, C.W.3
Brett, A.M.4
-
50
-
-
0034510361
-
-
Cioslowski, J.; Schimeczek, M.; Liu, G.; Stoyanov, V. J. Chem. Phys. 2000, 113, 9377.
-
(2000)
J. Chem. Phys
, vol.113
, pp. 9377
-
-
Cioslowski, J.1
Schimeczek, M.2
Liu, G.3
Stoyanov, V.4
-
51
-
-
34547118169
-
-
The NIST Compuational Chemistry Comparison and Benchmark DataBase (see ref 2) has a significant number of compounds that are included in our study. The NIST adheres to the six heavy atom limit with the exception of some aromatic compounds
-
The NIST Compuational Chemistry Comparison and Benchmark DataBase (see ref 2) has a significant number of compounds that are included in our study. The NIST adheres to the six heavy atom limit with the exception of some aromatic compounds.
-
-
-
-
52
-
-
34547100598
-
-
Calculations at the higher level are time-consuming. Taking a mid-sized molecule such as hexane as an example, a smaller basis set (6-311+G-(d,p)) requires under 3 h for computation. Using 3df,2p polarization functions requires in excess of 18 h, whereas a G3 calculation will be completed in just over 6 h and give much better results. Only in the size of the scratch files is the density functional more economical. The G3 scratch files are 5.6 GB, whereas those for the large density functional are only 101 MB.
-
Calculations at the higher level are time-consuming. Taking a mid-sized molecule such as hexane as an example, a smaller basis set (6-311+G-(d,p)) requires under 3 h for computation. Using 3df,2p polarization functions requires in excess of 18 h, whereas a G3 calculation will be completed in just over 6 h and give much better results. Only in the size of the scratch files is the density functional more economical. The G3 scratch files are 5.6 GB, whereas those for the large density functional are only 101 MB.
-
-
-
-
57
-
-
0006252494
-
-
(a) Ball, D. W. Theochem 1997, 417, 107.
-
(1997)
Theochem
, vol.417
, pp. 107
-
-
Ball, D.W.1
-
59
-
-
0033538858
-
-
Pan, J.-W.; Rogers, D. W.; McLafferty, F. Theochem 1999, 468, 59.
-
(1999)
Theochem
, vol.468
, pp. 59
-
-
Pan, J.-W.1
Rogers, D.W.2
McLafferty, F.3
-
60
-
-
24944546573
-
-
Izgorodina, E. I.; Coote, M. L.; Radom, L. J. Phys. Chem. A 2005, 109, 7558.
-
(2005)
J. Phys. Chem. A
, vol.109
, pp. 7558
-
-
Izgorodina, E.I.1
Coote, M.L.2
Radom, L.3
-
64
-
-
30544436686
-
-
Politzer, P.; Ma, Y.; Lane, P.; Concha, M. C. Int. J. Quantum Chem. 2005, 105, 341.
-
(2005)
Int. J. Quantum Chem
, vol.105
, pp. 341
-
-
Politzer, P.1
Ma, Y.2
Lane, P.3
Concha, M.C.4
-
65
-
-
4344605114
-
-
Liu, M-H.; Chen, C.; Liu, C-W.; Hong, Y-S. J. Phys. Chem. A 2004, 108, 6784.
-
(2004)
J. Phys. Chem. A
, vol.108
, pp. 6784
-
-
Liu, M.-H.1
Chen, C.2
Liu, C.-W.3
Hong, Y.-S.4
-
66
-
-
0033706383
-
-
Redfern, P. C.; Zapol, P.; Curtiss, L. A.; Raghavachari, K. J. Phys. Chem. A 2000, 104, 5840.
-
(2000)
J. Phys. Chem. A
, vol.104
, pp. 5840
-
-
Redfern, P.C.1
Zapol, P.2
Curtiss, L.A.3
Raghavachari, K.4
-
67
-
-
27844609720
-
-
Sebbar, N.; Bozzelli, J. W.; Bockhorn, H. Int. J. Chem. Kinet. 2005, 37, 633.
-
(2005)
Int. J. Chem. Kinet
, vol.37
, pp. 633
-
-
Sebbar, N.1
Bozzelli, J.W.2
Bockhorn, H.3
-
69
-
-
34547092496
-
-
Only single gauche conformers were computed. Incorporation of g+g+ conformers has an impact of less than 0.5 kJ/mol in most cases, although it is probable that consideration of such conformers would improve accuracy for large molecules such as decane.
-
Only single gauche conformers were computed. Incorporation of g+g+ conformers has an impact of less than 0.5 kJ/mol in most cases, although it is probable that consideration of such conformers would improve accuracy for large molecules such as decane.
-
-
-
-
71
-
-
34547107668
-
-
Enthalpies and free energies of formation calculated by all other methods may be found in Supporting Information
-
Enthalpies and free energies of formation calculated by all other methods may be found in Supporting Information.
-
-
-
-
72
-
-
34547101052
-
-
For example, 2,2-dimethylhexane has two rotatable bonds and 2,4-dimethyl hexane has one
-
For example, 2,2-dimethylhexane has two rotatable bonds and 2,4-dimethyl hexane has one.
-
-
-
|