메뉴 건너뛰기




Volumn 60, Issue 2, 2007, Pages 73-84

Material symmetries versus wavefront symmetries

Author keywords

[No Author keywords available]

Indexed keywords

MATERIAL SYMMETRY; WAVEFRONT SYMMETRY;

EID: 34447629369     PISSN: 00335614     EISSN: 14643855     Source Type: Journal    
DOI: 10.1093/qjmam/hbl020     Document Type: Article
Times cited : (10)

References (12)
  • 1
    • 0022768050 scopus 로고    scopus 로고
    • W. C. Van Buskirk, S. C. Cowin and R. Carter, Jr., A theory of acoustic measurement of the elastic constants of a general anisotropic solid, J. Mater. Sci. 21 (1986) 2759-2762.
    • W. C. Van Buskirk, S. C. Cowin and R. Carter, Jr., A theory of acoustic measurement of the elastic constants of a general anisotropic solid, J. Mater. Sci. 21 (1986) 2759-2762.
  • 2
    • 0024718771 scopus 로고
    • On the acoustic determination of the elastic moduli of anisotropic solids and acoustic conditions for the existence of planes of symmetry
    • A. N. Norris, On the acoustic determination of the elastic moduli of anisotropic solids and acoustic conditions for the existence of planes of symmetry, Q. JI Mech. Appl. Math. 42 (1989) 413-426.
    • (1989) Q. JI Mech. Appl. Math , vol.42 , pp. 413-426
    • Norris, A.N.1
  • 3
    • 0030141773 scopus 로고    scopus 로고
    • Symmetry classes for elasticity tensors
    • S. Forte and M. Vianello, Symmetry classes for elasticity tensors, J. Elast. 43 (1996) 81-108.
    • (1996) J. Elast , vol.43 , pp. 81-108
    • Forte, S.1    Vianello, M.2
  • 4
    • 0035499645 scopus 로고    scopus 로고
    • A new proof that the number of linear elastic symmetries is eight
    • P. Chadwick, M. Vianello and S. C. Cowin, A new proof that the number of linear elastic symmetries is eight, J. Mech. Phys. Solids 49 (2001) 2471-2492.
    • (2001) J. Mech. Phys. Solids , vol.49 , pp. 2471-2492
    • Chadwick, P.1    Vianello, M.2    Cowin, S.C.3
  • 5
    • 0242274305 scopus 로고    scopus 로고
    • T. C. T. Ting, Generalized Cowin - Mehrabadi theorems and a direct proof that the number of linear elastic symmetries is eight, Int. J. Sol. Str. 40 (2003) 7129-7142.
    • T. C. T. Ting, Generalized Cowin - Mehrabadi theorems and a direct proof that the number of linear elastic symmetries is eight, Int. J. Sol. Str. 40 (2003) 7129-7142.
  • 7
    • 34249918305 scopus 로고
    • On the completeness of the crystallographic symmetries in the description of the symmetries of the elastic tensor
    • H. Yong-Zhong and G. Del Piero, On the completeness of the crystallographic symmetries in the description of the symmetries of the elastic tensor, J. Elast. 25 (1991) 203-246.
    • (1991) J. Elast , vol.25 , pp. 203-246
    • Yong-Zhong, H.1    Del Piero, G.2
  • 8
    • 0031275065 scopus 로고    scopus 로고
    • Symmetry classes and harmonic decomposition for photoelasticity tensors
    • S. Forte and M. Vianello, Symmetry classes and harmonic decomposition for photoelasticity tensors, Int. J. Engng Sci. 35 (1997) 1317-1326.
    • (1997) Int. J. Engng Sci , vol.35 , pp. 1317-1326
    • Forte, S.1    Vianello, M.2
  • 12
    • 0000798431 scopus 로고
    • Sur la symétrie dans les phénomènes physiques, symétrie d'un champ électrique et d'un champ magnétique
    • 3e série, 393-415
    • P. Curie, Sur la symétrie dans les phénomènes physiques, symétrie d'un champ électrique et d'un champ magnétique, J. de Phys. 3e série 3 (1894) 393-415.
    • (1894) J. de Phys , vol.3
    • Curie, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.