-
1
-
-
0022768050
-
-
W. C. Van Buskirk, S. C. Cowin and R. Carter, Jr., A theory of acoustic measurement of the elastic constants of a general anisotropic solid, J. Mater. Sci. 21 (1986) 2759-2762.
-
W. C. Van Buskirk, S. C. Cowin and R. Carter, Jr., A theory of acoustic measurement of the elastic constants of a general anisotropic solid, J. Mater. Sci. 21 (1986) 2759-2762.
-
-
-
-
2
-
-
0024718771
-
On the acoustic determination of the elastic moduli of anisotropic solids and acoustic conditions for the existence of planes of symmetry
-
A. N. Norris, On the acoustic determination of the elastic moduli of anisotropic solids and acoustic conditions for the existence of planes of symmetry, Q. JI Mech. Appl. Math. 42 (1989) 413-426.
-
(1989)
Q. JI Mech. Appl. Math
, vol.42
, pp. 413-426
-
-
Norris, A.N.1
-
3
-
-
0030141773
-
Symmetry classes for elasticity tensors
-
S. Forte and M. Vianello, Symmetry classes for elasticity tensors, J. Elast. 43 (1996) 81-108.
-
(1996)
J. Elast
, vol.43
, pp. 81-108
-
-
Forte, S.1
Vianello, M.2
-
4
-
-
0035499645
-
A new proof that the number of linear elastic symmetries is eight
-
P. Chadwick, M. Vianello and S. C. Cowin, A new proof that the number of linear elastic symmetries is eight, J. Mech. Phys. Solids 49 (2001) 2471-2492.
-
(2001)
J. Mech. Phys. Solids
, vol.49
, pp. 2471-2492
-
-
Chadwick, P.1
Vianello, M.2
Cowin, S.C.3
-
5
-
-
0242274305
-
-
T. C. T. Ting, Generalized Cowin - Mehrabadi theorems and a direct proof that the number of linear elastic symmetries is eight, Int. J. Sol. Str. 40 (2003) 7129-7142.
-
T. C. T. Ting, Generalized Cowin - Mehrabadi theorems and a direct proof that the number of linear elastic symmetries is eight, Int. J. Sol. Str. 40 (2003) 7129-7142.
-
-
-
-
7
-
-
34249918305
-
On the completeness of the crystallographic symmetries in the description of the symmetries of the elastic tensor
-
H. Yong-Zhong and G. Del Piero, On the completeness of the crystallographic symmetries in the description of the symmetries of the elastic tensor, J. Elast. 25 (1991) 203-246.
-
(1991)
J. Elast
, vol.25
, pp. 203-246
-
-
Yong-Zhong, H.1
Del Piero, G.2
-
8
-
-
0031275065
-
Symmetry classes and harmonic decomposition for photoelasticity tensors
-
S. Forte and M. Vianello, Symmetry classes and harmonic decomposition for photoelasticity tensors, Int. J. Engng Sci. 35 (1997) 1317-1326.
-
(1997)
Int. J. Engng Sci
, vol.35
, pp. 1317-1326
-
-
Forte, S.1
Vianello, M.2
-
12
-
-
0000798431
-
Sur la symétrie dans les phénomènes physiques, symétrie d'un champ électrique et d'un champ magnétique
-
3e série, 393-415
-
P. Curie, Sur la symétrie dans les phénomènes physiques, symétrie d'un champ électrique et d'un champ magnétique, J. de Phys. 3e série 3 (1894) 393-415.
-
(1894)
J. de Phys
, vol.3
-
-
Curie, P.1
|