-
3
-
-
0035499645
-
A new proof that the number of linear elastic symmetries is eight
-
P. Chadwick, S. C. Cowin and M. Vianello, A new proof that the number of linear elastic symmetries is eight, J. Mech. Phys. Solids 49 (2001) 2471-2492.
-
(2001)
J. Mech. Phys. Solids
, vol.49
, pp. 2471-2492
-
-
Chadwick, P.1
Cowin, S.C.2
Vianello, M.3
-
4
-
-
0031275065
-
Symmetry classes and harmonic decomposition for photoelasticity tensors
-
S. Forte and M. Vianello, Symmetry classes and harmonic decomposition for photoelasticity tensors, Int. J. Engng Sci. 35 (1997) 1317-1326.
-
(1997)
Int. J. Engng Sci.
, vol.35
, pp. 1317-1326
-
-
Forte, S.1
Vianello, M.2
-
5
-
-
0242274305
-
Generalized Cowin-Mehrabadi theorems and a direct proof that the number of linear elastic symmetries is eight
-
T. C. T. Ting, Generalized Cowin-Mehrabadi theorems and a direct proof that the number of linear elastic symmetries is eight, Int. J. Solids Struct. 40 (2003) 7129-7142.
-
(2003)
Int. J. Solids Struct.
, vol.40
, pp. 7129-7142
-
-
Ting, T.C.T.1
-
6
-
-
84995007716
-
A geometrical picture of anisotropic elastic tensors
-
G. Backus, A geometrical picture of anisotropic elastic tensors, Rev. Geophys. 8 (1970) 633-671.
-
(1970)
Rev. Geophys.
, vol.8
, pp. 633-671
-
-
Backus, G.1
-
7
-
-
0032001355
-
Classification of symmetry by means of Maxwell multipoles
-
R. Baerheim, Classification of symmetry by means of Maxwell multipoles, Q. Jl Mech. Appl. Math. 51 (1998) 73-103.
-
(1998)
Q. Jl Mech. Appl. Math.
, vol.51
, pp. 73-103
-
-
Baerheim, R.1
-
8
-
-
0027650008
-
Harmonic decomposition of the anisotropic elasticity tensor
-
ibid
-
R. Baerheim, Harmonic decomposition of the anisotropic elasticity tensor, ibid. 46 (1993) 391-418.
-
(1993)
, vol.46
, pp. 391-418
-
-
Baerheim, R.1
-
9
-
-
0029297004
-
Anisotropic symmetries of linear elasticity
-
S. C. Cowin and M. M. Mehrabadi, Anisotropic symmetries of linear elasticity, Appl. Mech. Rev. 48 (1995) 247-285.
-
(1995)
Appl. Mech. Rev.
, vol.48
, pp. 247-285
-
-
Cowin, S.C.1
Mehrabadi, M.M.2
-
10
-
-
44049110894
-
The structure of the linear anisotropic elastic symmetries
-
S. C. Cowin and M. M. Mehrabadi, The structure of the linear anisotropic elastic symmetries, J. Mech. Phys. Solids 40 (1992) 1459-1471.
-
(1992)
J. Mech. Phys. Solids
, vol.40
, pp. 1459-1471
-
-
Cowin, S.C.1
Mehrabadi, M.M.2
-
11
-
-
0001473923
-
On the identification of material symmetry for anisotropic elastic materials
-
S. C. Cowin and M. M. Mehrabadi, On the identification of material symmetry for anisotropic elastic materials, Q. Jl Mech. Appl. Math. 40 (1987) 451-476.
-
(1987)
Q. Jl Mech. Appl. Math.
, vol.40
, pp. 451-476
-
-
Cowin, S.C.1
Mehrabadi, M.M.2
-
12
-
-
0030141773
-
Symmetry classes for elasticity tensors
-
S. Forte and M. Vianello, Symmetry classes for elasticity tensors, J. Elast. 43 (1996) 81-108.
-
(1996)
J. Elast.
, vol.43
, pp. 81-108
-
-
Forte, S.1
Vianello, M.2
-
14
-
-
34249918305
-
On the completeness of the crystallographic symmetries in the description of the symmetries of the elastic tensor
-
Y. Z. Huo and G. del Piero, On the completeness of the crystallographic symmetries in the description of the symmetries of the elastic tensor, J. Elast. 25 (1991) 203-246.
-
(1991)
J. Elast.
, vol.25
, pp. 203-246
-
-
Huo, Y.Z.1
del Piero, G.2
|