메뉴 건너뛰기




Volumn 28, Issue 13, 2007, Pages 1657-1666

A parametric gradient descent MRI intensity inhomogeneity correction algorithm

Author keywords

Intensity inhomogeneity correction; MRI; Parametric methods

Indexed keywords

BRAINWEB SITE SIMULATIONS; HOMOGENEOUS TISSUES; LEGENDRE POLYNOMIALS; MRI INTENSITY INHOMOGENEITY CORRECTION; MULTIPLICATIVE INHOMOGENEITY FIELD; RADIO FREQUENCY SIGNAL;

EID: 34447324068     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2007.04.016     Document Type: Article
Times cited : (21)

References (34)
  • 1
    • 0036489378 scopus 로고    scopus 로고
    • A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data
    • Ahmed M.N., Yamany S.N., Mohamed N., Farag A.A., and Moriarty T. A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. Med. Imag. 21 3 (2002) 193-199
    • (2002) IEEE Trans. Med. Imag. , vol.21 , Issue.3 , pp. 193-199
    • Ahmed, M.N.1    Yamany, S.N.2    Mohamed, N.3    Farag, A.A.4    Moriarty, T.5
  • 4
    • 34447322615 scopus 로고    scopus 로고
    • BrainWeb http://www.bic.mni.mcgill.ca/brainweb/.
  • 5
    • 84947812228 scopus 로고    scopus 로고
    • Compensation of spatial inhomogeneity in MRI based on a parametric bias estimate
    • Visualization in Biomedical Computing, Proc. VBC'96, Springer-Verlag
    • Brechbühler C., Gerig G., and Szekely G. Compensation of spatial inhomogeneity in MRI based on a parametric bias estimate. Visualization in Biomedical Computing, Proc. VBC'96. Lectures Notes in Computer Science vol. 1131 (1996), Springer-Verlag 141-146
    • (1996) Lectures Notes in Computer Science , vol.1131 , pp. 141-146
    • Brechbühler, C.1    Gerig, G.2    Szekely, G.3
  • 6
    • 21544432712 scopus 로고    scopus 로고
    • Brainweb: Online interface to a 3D MRI simulated brain database
    • Cocosco C.A., Kollokian V., Kwan R.K.-S., and Evans A.C. Brainweb: Online interface to a 3D MRI simulated brain database. NeuroImage 5 4 (1997) 425
    • (1997) NeuroImage , vol.5 , Issue.4 , pp. 425
    • Cocosco, C.A.1    Kollokian, V.2    Kwan, R.K.-S.3    Evans, A.C.4
  • 10
    • 0015644825 scopus 로고
    • A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
    • Dunn J.C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybern. 3 (1973) 32-57
    • (1973) J. Cybern. , vol.3 , pp. 32-57
    • Dunn, J.C.1
  • 11
    • 25144432321 scopus 로고    scopus 로고
    • A gradient descent MRI illumination correction algorithm
    • Computational Intelligence and Bioinspired Systems IWANN 2005. Cabestany J., Prieto A., and Sandoval F. (Eds), Springer-Verlag, Berlin
    • Garcia M., Fernandez E., Graña M., and Torrealdea F.J. A gradient descent MRI illumination correction algorithm. In: Cabestany J., Prieto A., and Sandoval F. (Eds). Computational Intelligence and Bioinspired Systems IWANN 2005. LNCS vol. 3512 (2005), Springer-Verlag, Berlin 913-920
    • (2005) LNCS , vol.3512 , pp. 913-920
    • Garcia, M.1    Fernandez, E.2    Graña, M.3    Torrealdea, F.J.4
  • 12
    • 0026835074 scopus 로고
    • Constrained restoration and the recovery of discontinuities
    • Geman D., and Reynolds G. Constrained restoration and the recovery of discontinuities. IEEE Trans. Pattern Anal. Machine Intell. 14 3 (1992) 367-383
    • (1992) IEEE Trans. Pattern Anal. Machine Intell. , vol.14 , Issue.3 , pp. 367-383
    • Geman, D.1    Reynolds, G.2
  • 16
    • 0031150141 scopus 로고    scopus 로고
    • Estimating the bias field of MR images
    • Guillemaud M., and Brady R. Estimating the bias field of MR images. IEEE Trans. Med. Imag. 16 3 (1997) 238-251
    • (1997) IEEE Trans. Med. Imag. , vol.16 , Issue.3 , pp. 238-251
    • Guillemaud, M.1    Brady, R.2
  • 17
    • 33749522350 scopus 로고    scopus 로고
    • A review on MR image intensity inhomogeneity correction
    • Hou Z. A review on MR image intensity inhomogeneity correction. Int. J. Biomed. Imag. 2006 (2006) 1-11
    • (2006) Int. J. Biomed. Imag. , vol.2006 , pp. 1-11
    • Hou, Z.1
  • 18
    • 34447295165 scopus 로고    scopus 로고
    • Internet Brain Segmentation Repository http://www.cma.mgh.harvard.edu/ibsr/.
  • 19
    • 84889173716 scopus 로고    scopus 로고
    • Kwan, R.K.-S., Evans, A.C., Pike, G.B., 1996. An extensible MRI simulator for post-processing evaluation. Visualization in Biomedical Computing, Proc. VBC '96, pp. 135-140.
  • 20
    • 0033233097 scopus 로고    scopus 로고
    • MRI simulation-based evaluation of image-processing and classification methods
    • Kwan R.K.-S., Evans A.C., and Pike G.B. MRI simulation-based evaluation of image-processing and classification methods. IEEE Trans. Med. Imag. 18 11 (1999) 1085-1097
    • (1999) IEEE Trans. Med. Imag. , vol.18 , Issue.11 , pp. 1085-1097
    • Kwan, R.K.-S.1    Evans, A.C.2    Pike, G.B.3
  • 21
    • 0029775464 scopus 로고    scopus 로고
    • Robustizing m-estimation using deterministic annealing
    • Li S.Z. Robustizing m-estimation using deterministic annealing. Pattern Recognition 29 1 (1996) 159-166
    • (1996) Pattern Recognition , vol.29 , Issue.1 , pp. 159-166
    • Li, S.Z.1
  • 22
    • 0141857203 scopus 로고    scopus 로고
    • An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation
    • Liew A.W.C., and Hong Y. An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation. IEEE Trans. Med. Imag. 22 9 (2003) 1063-1075
    • (2003) IEEE Trans. Med. Imag. , vol.22 , Issue.9 , pp. 1063-1075
    • Liew, A.W.C.1    Hong, Y.2
  • 24
    • 0032843554 scopus 로고    scopus 로고
    • An adaptive fuzzy c-means algorithm for image segmentation in the presence of intensity inhomogeneities
    • Pham D.L., and Prince J.L. An adaptive fuzzy c-means algorithm for image segmentation in the presence of intensity inhomogeneities. Pattern Recognition Lett. 20 (1999) 57-68
    • (1999) Pattern Recognition Lett. , vol.20 , pp. 57-68
    • Pham, D.L.1    Prince, J.L.2
  • 25
    • 0033181293 scopus 로고    scopus 로고
    • Adaptive fuzzy segmentation of magnetic resonance images
    • Pham D.L., and Prince J.L. Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans. Med. Imag. 18 9 (1999) 737-752
    • (1999) IEEE Trans. Med. Imag. , vol.18 , Issue.9 , pp. 737-752
    • Pham, D.L.1    Prince, J.L.2
  • 26
    • 0032028195 scopus 로고    scopus 로고
    • Segmentation of MR images with intensity inhomogeneities
    • Rajapakse J.C., and Kruggel F. Segmentation of MR images with intensity inhomogeneities. Image Vision Comput. 16 3 (1998) 165-180
    • (1998) Image Vision Comput. , vol.16 , Issue.3 , pp. 165-180
    • Rajapakse, J.C.1    Kruggel, F.2
  • 27
    • 33646420335 scopus 로고    scopus 로고
    • Method to correct intensity inhomogeneity in MR images for atherosclerosis characterization
    • Salvado O., Hillenbrand C., Shaoxiang Z., and Wilson D.L. Method to correct intensity inhomogeneity in MR images for atherosclerosis characterization. IEEE Trans. Med. Imag. 25 5 (2006) 539-552
    • (2006) IEEE Trans. Med. Imag. , vol.25 , Issue.5 , pp. 539-552
    • Salvado, O.1    Hillenbrand, C.2    Shaoxiang, Z.3    Wilson, D.L.4
  • 29
    • 24344477133 scopus 로고    scopus 로고
    • An intelligent modified fuzzy c-means based algorithm for bias estimation and segmentation of brain MRI
    • Siyal M.Y., and Yu L. An intelligent modified fuzzy c-means based algorithm for bias estimation and segmentation of brain MRI. Pattern Recognition Lett. 26 13 (2005) 2052-2062
    • (2005) Pattern Recognition Lett. , vol.26 , Issue.13 , pp. 2052-2062
    • Siyal, M.Y.1    Yu, L.2
  • 30
    • 0031987382 scopus 로고    scopus 로고
    • A nonparametric method for automatic correction of intensity nonuniformity in MRI data
    • Sled J.G., Zijdenbos A.P., and Evans A.C. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imag. 17 (1998) 87-97
    • (1998) IEEE Trans. Med. Imag. , vol.17 , pp. 87-97
    • Sled, J.G.1    Zijdenbos, A.P.2    Evans, A.C.3
  • 31
    • 0033623981 scopus 로고    scopus 로고
    • Parametric estimate of intensity inhomogeneities applied to MRI
    • Styner M., Gerig G., Brechbühler C., and Szekely G. Parametric estimate of intensity inhomogeneities applied to MRI. IEEE Trans. Med. Imag. 19 3 (2000) 153-165
    • (2000) IEEE Trans. Med. Imag. , vol.19 , Issue.3 , pp. 153-165
    • Styner, M.1    Gerig, G.2    Brechbühler, C.3    Szekely, G.4
  • 32
    • 33847774807 scopus 로고    scopus 로고
    • A review of methods for correction of intensity inhomogeneity in MRI
    • Vovk U., Pernus F., and Likar B. A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans. Med. Imag. 26 3 (2007) 405-421
    • (2007) IEEE Trans. Med. Imag. , vol.26 , Issue.3 , pp. 405-421
    • Vovk, U.1    Pernus, F.2    Likar, B.3
  • 34
    • 0034745001 scopus 로고    scopus 로고
    • Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
    • Zhang Y., Brady M., and Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imag. 20 1 (2001) 45-57
    • (2001) IEEE Trans. Med. Imag. , vol.20 , Issue.1 , pp. 45-57
    • Zhang, Y.1    Brady, M.2    Smith, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.