메뉴 건너뛰기




Volumn 55, Issue 7 I, 2007, Pages 3192-3206

Cooperative recurrent neural networks for the constrained L1 estimator

Author keywords

Constrained least absolute deviation (LAD) estimation; Cooperative recurrent neural networks (CRNNs); Global convergence; Linear parameter estimation

Indexed keywords

ALGORITHMS; COMPUTER SIMULATION; CONTINUOUS TIME SYSTEMS; LEAST SQUARES APPROXIMATIONS; MATHEMATICAL MODELS; PARAMETER ESTIMATION;

EID: 34347377562     PISSN: 1053587X     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSP.2007.894379     Document Type: Article
Times cited : (12)

References (40)
  • 1
  • 4
    • 0023174683 scopus 로고
    • High-resolution signal and noise field estimation using the L1 (least absolute values) norm
    • Jan
    • C. Zala, I. Barrodale, and J. Kennedy, "High-resolution signal and noise field estimation using the L1 (least absolute values) norm," IEEE J. Ocean. Eng., vol. OE-12, no. 1, pp. 253-264, Jan. 1987.
    • (1987) IEEE J. Ocean. Eng , vol.OE-12 , Issue.1 , pp. 253-264
    • Zala, C.1    Barrodale, I.2    Kennedy, J.3
  • 6
    • 0033738181 scopus 로고    scopus 로고
    • System parameter estimation with input/ output noisy data and missing measurements
    • Jun
    • J. M. Chen and B. S. Chen, "System parameter estimation with input/ output noisy data and missing measurements," IEEE Trans. Signal Process., vol. 48, no. 6, pp. 1548-1558, Jun. 2000.
    • (2000) IEEE Trans. Signal Process , vol.48 , Issue.6 , pp. 1548-1558
    • Chen, J.M.1    Chen, B.S.2
  • 7
    • 0036647905 scopus 로고    scopus 로고
    • D. Erdogmus D. and J. C. Principe, An error-entropy minimum algorithm for supervised training of nonlinear adaptive systems, IEEE Trans. Signal Process., 50, no. 7, pp. 1780-1786, Jul. 2002.
    • D. Erdogmus D. and J. C. Principe, "An error-entropy minimum algorithm for supervised training of nonlinear adaptive systems," IEEE Trans. Signal Process., vol. 50, no. 7, pp. 1780-1786, Jul. 2002.
  • 8
    • 0024611158 scopus 로고
    • ∞ minimization via a variant of Karmarkar's algorithm
    • Feb
    • ∞ minimization via a variant of Karmarkar's algorithm," IEEE Trans. Signal Process. vol. 37, no. 2, pp. 245-253, Feb. 1989.
    • (1989) IEEE Trans. Signal Process , vol.37 , Issue.2 , pp. 245-253
    • Ruzinsky, S.A.1    Olsen, E.T.2
  • 9
    • 0028386025 scopus 로고
    • 2 norms with application to Bayesian-estimation
    • Mar
    • 2 norms with application to Bayesian-estimation," IEEE Trans. Signal Process., vol. 42, no. 3, pp. 618-527, Mar. 1994.
    • (1994) IEEE Trans. Signal Process , vol.42 , Issue.3 , pp. 618-527
    • Alliney, S.1    Ruzinsky, S.A.2
  • 10
    • 0032222086 scopus 로고    scopus 로고
    • 1 estimator and the Huber M-estimator
    • 1 estimator and the Huber M-estimator," SIAM J. Optimization, vol. 8, pp. 457-475, 1998.
    • (1998) SIAM J. Optimization , vol.8 , pp. 457-475
    • Li, W.1    Swetits, J.J.2
  • 11
    • 0347610130 scopus 로고    scopus 로고
    • ∞ norm approximate solutions an overdetermined system of linear equations
    • ∞ norm approximate solutions an overdetermined system of linear equations," Digit. Signal Process., vol. 12, pp. 524-560, 2002.
    • (2002) Digit. Signal Process , vol.12 , pp. 524-560
    • Cadzow, J.A.1
  • 14
    • 0001302140 scopus 로고    scopus 로고
    • Gradient projection neual network: Analog solver for linearly constrained nonlinear programming
    • K. Urahama, "Gradient projection neual network: Analog solver for linearly constrained nonlinear programming," Neural Computation, vol. 8, pp. 1061-1074, 1996.
    • (1996) Neural Computation , vol.8 , pp. 1061-1074
    • Urahama, K.1
  • 15
    • 0033354129 scopus 로고    scopus 로고
    • An analysis of a class of neural networks for solving linear programming problems
    • Nov
    • E. K. P. Chong, S. Hui, and S. H. Zak, "An analysis of a class of neural networks for solving linear programming problems," IEEE Trans. Autom. Control, vol. 44, no. 11, pp. 1995-2006, Nov. 1999.
    • (1999) IEEE Trans. Autom. Control , vol.44 , Issue.11 , pp. 1995-2006
    • Chong, E.K.P.1    Hui, S.2    Zak, S.H.3
  • 16
    • 0001284544 scopus 로고    scopus 로고
    • A recurrent neural network for nonlinear optimization with a continuously differentiable objective function and bound constraints
    • Nov
    • X. Liang and J. Wang, "A recurrent neural network for nonlinear optimization with a continuously differentiable objective function and bound constraints," IEEE Trans. Neural Netw., vol. 11, no. 6, pp. 1251-1262, Nov. 2000.
    • (2000) IEEE Trans. Neural Netw , vol.11 , Issue.6 , pp. 1251-1262
    • Liang, X.1    Wang, J.2
  • 17
    • 2442472146 scopus 로고    scopus 로고
    • A general projection neural network for solving monotone variational inequality and related optimization problems
    • Mar
    • Y. S. Xia and J. Wang, "A general projection neural network for solving monotone variational inequality and related optimization problems," IEEE Trens. Neural Netw., vol. 15, no. 2, pp. 318-328, Mar. 2004.
    • (2004) IEEE Trens. Neural Netw , vol.15 , Issue.2 , pp. 318-328
    • Xia, Y.S.1    Wang, J.2
  • 18
    • 13644253420 scopus 로고    scopus 로고
    • A primal-dual neural network for on-line resolving constrained kinematic redundancy
    • Feb
    • Y. S. Xia, G. Feng, and J. Wang, "A primal-dual neural network for on-line resolving constrained kinematic redundancy," IEEE Trans. Syst., Man Cybern. B, Cybern., vol. 35, no. 1, pp. 54-64, Feb. 2005.
    • (2005) IEEE Trans. Syst., Man Cybern. B, Cybern , vol.35 , Issue.1 , pp. 54-64
    • Xia, Y.S.1    Feng, G.2    Wang, J.3
  • 19
    • 13244268420 scopus 로고    scopus 로고
    • A new regression estimator with neural network realization
    • Feb
    • Y. S. Xia, H. Leung, N. Xie, and E. Bossé, "A new regression estimator with neural network realization," IEEE Trans. Signal Process., vol. 53, no. 2, pp. 672-685, Feb. 2005.
    • (2005) IEEE Trans. Signal Process , vol.53 , Issue.2 , pp. 672-685
    • Xia, Y.S.1    Leung, H.2    Xie, N.3    Bossé, E.4
  • 20
    • 0031277290 scopus 로고    scopus 로고
    • CMNN: Cooperative modular neural networks for pattern recognition
    • Nov
    • G. Auda and M. S. Kamel, "CMNN: Cooperative modular neural networks for pattern recognition," Pettern Recog. Lett., vol. 18, pp. 1391-1398, Nov. 1997.
    • (1997) Pettern Recog. Lett , vol.18 , pp. 1391-1398
    • Auda, G.1    Kamel, M.S.2
  • 21
    • 0032584973 scopus 로고    scopus 로고
    • CMNN: Cooperative modular neural network
    • G. Auda and M. S. Kamel, "CMNN: Cooperative modular neural network," Neurocomput., vol. 20, pp. 189-207, 1998.
    • (1998) Neurocomput , vol.20 , pp. 189-207
    • Auda, G.1    Kamel, M.S.2
  • 22
    • 0033359061 scopus 로고    scopus 로고
    • Modularity in neural computing
    • Sep
    • T. Caelli, L. Guan, and W. Wen, "Modularity in neural computing," Proc. IEEE, vol. 87, no. 9, pp. 1497-1518, Sep. 1999.
    • (1999) Proc. IEEE , vol.87 , Issue.9 , pp. 1497-1518
    • Caelli, T.1    Guan, L.2    Wen, W.3
  • 23
    • 0042525838 scopus 로고    scopus 로고
    • A constructive algorithm for training cooperative neural network ensembles
    • Jul
    • M. M. Islam, X. Yao, and K. Murase, "A constructive algorithm for training cooperative neural network ensembles," IEEE Trans. Neural Netw., vol. 14, no. 4, pp. 820-834, Jul. 2003.
    • (2003) IEEE Trans. Neural Netw , vol.14 , Issue.4 , pp. 820-834
    • Islam, M.M.1    Yao, X.2    Murase, K.3
  • 24
    • 0024016062 scopus 로고
    • Neural networks for nonlinear programming
    • May
    • M. P. Kennedy and L. O. Chua, "Neural networks for nonlinear programming," IEEE Trans. Circuits Syst., vol. 35, no. 5, pp. 554-562, May 1988.
    • (1988) IEEE Trans. Circuits Syst , vol.35 , Issue.5 , pp. 554-562
    • Kennedy, M.P.1    Chua, L.O.2
  • 25
    • 0027555144 scopus 로고
    • Neural network for quadratic optimization with bound constraints
    • Mar
    • A. Bouzerdoum and T. R. Pattison, "Neural network for quadratic optimization with bound constraints," IEEE Trans. Neural Netw., vol. 4, no. 2, pp. 293-304, Mar. 1993.
    • (1993) IEEE Trans. Neural Netw , vol.4 , Issue.2 , pp. 293-304
    • Bouzerdoum, A.1    Pattison, T.R.2
  • 26
    • 0001492035 scopus 로고
    • Neural networks for solving systems of linear equations. II. Minimax and least absolute value problems
    • Sep
    • A. Cichocki and R. Unbehauen, "Neural networks for solving systems of linear equations. II. Minimax and least absolute value problems," IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 39, no. 9, pp. 619-633, Sep. 1992.
    • (1992) IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process , vol.39 , Issue.9 , pp. 619-633
    • Cichocki, A.1    Unbehauen, R.2
  • 27
    • 0035417866 scopus 로고    scopus 로고
    • 1 norm optimization approach for fault diagnosis of nonlinear circuits with tolerance
    • Aug
    • 1 norm optimization approach for fault diagnosis of nonlinear circuits with tolerance," IEEE Proc. Circuit Devices, vol. 148, no. 4, pp. 223-229, Aug. 2001.
    • (2001) IEEE Proc. Circuit Devices , vol.148 , Issue.4 , pp. 223-229
    • He, Y.1    Sun, Y.2
  • 28
    • 0031142664 scopus 로고    scopus 로고
    • Neural network for solving extended linear programming
    • May
    • Y. S. Xia, "Neural network for solving extended linear programming," IEEE Trans. Neural Netw., vol. 8, no. 3, pp. 803-806, May 1997.
    • (1997) IEEE Trans. Neural Netw , vol.8 , Issue.3 , pp. 803-806
    • Xia, Y.S.1
  • 30
    • 0030194730 scopus 로고    scopus 로고
    • An optimal neuron evolution algorithm for constrained quadratic programming in image restoration
    • Jul
    • L. Guan, "An optimal neuron evolution algorithm for constrained quadratic programming in image restoration," IEEE Trans. Syst., Man Cybern. A, Syst. Humans, vol. 26, no. 4, pp. 513-518, Jul. 1996.
    • (1996) IEEE Trans. Syst., Man Cybern. A, Syst. Humans , vol.26 , Issue.4 , pp. 513-518
    • Guan, L.1
  • 31
    • 0035368860 scopus 로고    scopus 로고
    • A recursive least squares implementation for LCMP beamforming under quadratic constraint
    • Jun
    • Z. Tian, K. L. Bell, and H. L. Van Trees, "A recursive least squares implementation for LCMP beamforming under quadratic constraint," IEEE Trans. Signal Process., vol. 49, no. 6, pp. 1138-1145, Jun. 2001.
    • (2001) IEEE Trans. Signal Process , vol.49 , Issue.6 , pp. 1138-1145
    • Tian, Z.1    Bell, K.L.2    Van Trees, H.L.3
  • 33
    • 1242331294 scopus 로고    scopus 로고
    • A "nonnegative PCA" algorithm for independent component analysis
    • Jan
    • M. D. Plumbley and E. Oja, "A "nonnegative PCA" algorithm for independent component analysis," IEEE Trans. Neural Netw., vol. 15, no. 1, pp. 66-76, Jan. 2004.
    • (2004) IEEE Trans. Neural Netw , vol.15 , Issue.1 , pp. 66-76
    • Plumbley, M.D.1    Oja, E.2
  • 34
    • 0347337985 scopus 로고    scopus 로고
    • Adaptive filter design subject to output envelope constraints and bounded input noise
    • Dec
    • W. X. Zheng, "Adaptive filter design subject to output envelope constraints and bounded input noise," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 50, no. 12, pp. 1023-1027, Dec. 2003.
    • (2003) IEEE Trans. Circuits Syst. II, Exp. Briefs , vol.50 , Issue.12 , pp. 1023-1027
    • Zheng, W.X.1
  • 36
    • 1542333710 scopus 로고    scopus 로고
    • 1 -norm solutions for underdetermined source separation
    • Mar
    • 1 -norm solutions for underdetermined source separation," IEEE Trans. Signal Process., vol. 52, no. 3, pp. 582-591, Mar. 2004.
    • (2004) IEEE Trans. Signal Process , vol.52 , Issue.3 , pp. 582-591
    • Takigawa, I.1    Kudo, M.2    Toyama, J.3
  • 40
    • 0141597307 scopus 로고    scopus 로고
    • The neural network model for solving minimax problems with constraints
    • Chinese Ed
    • Q. Tao and T. J. Fang, "The neural network model for solving minimax problems with constraints," Control Theory Control Appl., vol. 17, no. 1, pp. 82-84, 2000, (Chinese Ed.).
    • (2000) Control Theory Control Appl , vol.17 , Issue.1 , pp. 82-84
    • Tao, Q.1    Fang, T.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.