메뉴 건너뛰기




Volumn 148, Issue , 2006, Pages 809-816

Feature value acquisition in testing: A sequential batch test algorithm

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTER AIDED DIAGNOSIS; COST EFFECTIVENESS; ERROR ANALYSIS; FEATURE EXTRACTION; LEARNING SYSTEMS;

EID: 34250776037     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1143844.1143946     Document Type: Conference Paper
Times cited : (26)

References (23)
  • 4
    • 34250726983 scopus 로고    scopus 로고
    • Domingos, P. 1999. MetaCost: A General Method for Making Classifiers Cost-Sensitive. In Proceedings of the Fifth International Conference on Knowledge Discovery and Data Mining, 155-164. San Diego, CA: ACM Press.
    • Domingos, P. 1999. MetaCost: A General Method for Making Classifiers Cost-Sensitive. In Proceedings of the Fifth International Conference on Knowledge Discovery and Data Mining, 155-164. San Diego, CA: ACM Press.
  • 5
    • 84867577175 scopus 로고    scopus 로고
    • Elkan, C. 2001. The Foundations of Cost-Sensitive Learning. In Proceedings of the Seventeenth International Joint Conference of Artificial Intelligence, 973-978. Seattle, Washington: Morgan Kaufmann.
    • Elkan, C. 2001. The Foundations of Cost-Sensitive Learning. In Proceedings of the Seventeenth International Joint Conference of Artificial Intelligence, 973-978. Seattle, Washington: Morgan Kaufmann.
  • 6
    • 34250729653 scopus 로고    scopus 로고
    • Fayyad, U.M. and Irani, K.B. 1993. Multi-interval discretization of continuous-valued attributes for classification learning. In Proceedings of the 13th International Joint Conference on Artificial Intelligence, 1022-1027. France: Morgan Kaufmann.
    • Fayyad, U.M. and Irani, K.B. 1993. Multi-interval discretization of continuous-valued attributes for classification learning. In Proceedings of the 13th International Joint Conference on Artificial Intelligence, 1022-1027. France: Morgan Kaufmann.
  • 9
    • 0036680338 scopus 로고    scopus 로고
    • Learning cost-sensitive active classifiers
    • Greiner, R., Grove, A., and Roth, D. 2002. Learning cost-sensitive active classifiers. Artificial Intelligence, 139(2): 137-174.
    • (2002) Artificial Intelligence , vol.139 , Issue.2 , pp. 137-174
    • Greiner, R.1    Grove, A.2    Roth, D.3
  • 10
    • 14344258878 scopus 로고    scopus 로고
    • Ling, C.X., Yang, Q., Wang, J., and Zhang, S. 2004. Decision Trees with Minimal Costs. In Proceedings of the Twenty-First International Conference on Machine Learning, Banff, Alberta: Morgan Kaufmann.
    • Ling, C.X., Yang, Q., Wang, J., and Zhang, S. 2004. Decision Trees with Minimal Costs. In Proceedings of the Twenty-First International Conference on Machine Learning, Banff, Alberta: Morgan Kaufmann.
  • 11
    • 34250753232 scopus 로고    scopus 로고
    • Lizotte, D., Madani, O., and Greiner R. 2003. Budgeted Learning of Naïve-Bayes Classifiers. In Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence. Acapulco, Mexico: Morgan Kaufmann.
    • Lizotte, D., Madani, O., and Greiner R. 2003. Budgeted Learning of Naïve-Bayes Classifiers. In Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence. Acapulco, Mexico: Morgan Kaufmann.
  • 12
    • 19544373606 scopus 로고    scopus 로고
    • Melville, P., Saar-Tsechansky, M., Provost, F., and Mooney, R.J. 2004. Active Feature Acquisition for Classifier Induction. In Proceedings of the Fourth International Conference on Data Mining. UK.
    • Melville, P., Saar-Tsechansky, M., Provost, F., and Mooney, R.J. 2004. Active Feature Acquisition for Classifier Induction. In Proceedings of the Fourth International Conference on Data Mining. UK.
  • 15
    • 0026154832 scopus 로고
    • The use of background knowledge in decision tree induction
    • Nunez, M. 1991. The use of background knowledge in decision tree induction. Machine learning, 6:231-250.
    • (1991) Machine learning , vol.6 , pp. 231-250
    • Nunez, M.1
  • 17
    • 1242285091 scopus 로고    scopus 로고
    • Active sampling for class probability estimation and ranking
    • Saar-Tsechansky, M. and Provost, F. 2004. Active sampling for class probability estimation and ranking. Machine Learning, 54(2): 153-178.
    • (2004) Machine Learning , vol.54 , Issue.2 , pp. 153-178
    • Saar-Tsechansky, M.1    Provost, F.2
  • 18
    • 0027682298 scopus 로고
    • Cost-sensitive learning of classification knowledge and its applications in robotics
    • Tan, M. 1993. Cost-sensitive learning of classification knowledge and its applications in robotics. Machine Learning Journal, 13:7-33.
    • (1993) Machine Learning Journal , vol.13 , pp. 7-33
    • Tan, M.1
  • 19
    • 34250739785 scopus 로고    scopus 로고
    • Ting, K.M. 1998. Inducing Cost-Sensitive Trees via Instance Weighting. In Proceedings of the Second European Symposium on Principles of Data Mining and Knowledge Discovery, 23-26. Springer-Verlag.
    • Ting, K.M. 1998. Inducing Cost-Sensitive Trees via Instance Weighting. In Proceedings of the Second European Symposium on Principles of Data Mining and Knowledge Discovery, 23-26. Springer-Verlag.
  • 20
    • 0000865580 scopus 로고
    • Cost-Sensitive Classification: Empirical Evaluation of a Hybrid Genetic Decision Tree Induction Algorithm
    • Turney, P.D. 1995. Cost-Sensitive Classification: Empirical Evaluation of a Hybrid Genetic Decision Tree Induction Algorithm. Journal of Artificial Intelligence Research 2:369-409.
    • (1995) Journal of Artificial Intelligence Research , vol.2 , pp. 369-409
    • Turney, P.D.1
  • 21
    • 34250733387 scopus 로고    scopus 로고
    • Turney, P.D. 2000. Types of cost in inductive concept learning. In Proceedings of the Workshop on Cost-Sensitive Learning at the Seventeenth International Conference on Machine Learning, Stanford University, California.
    • Turney, P.D. 2000. Types of cost in inductive concept learning. In Proceedings of the Workshop on Cost-Sensitive Learning at the Seventeenth International Conference on Machine Learning, Stanford University, California.
  • 22
    • 0035789316 scopus 로고    scopus 로고
    • Zadrozny, B. and Elkan, C. 2001. Learning and Making Decisions When Costs and Probabilities are Both Unknown. In Proceedings of the Seventh International Conference on Knowledge Discovery and Data Mining, 204-213.
    • Zadrozny, B. and Elkan, C. 2001. Learning and Making Decisions When Costs and Probabilities are Both Unknown. In Proceedings of the Seventh International Conference on Knowledge Discovery and Data Mining, 204-213.
  • 23
    • 34250699934 scopus 로고    scopus 로고
    • Zubek, V.B. and Dietterich, T. 2002. Pruning improves heuristic search for cost-sensitive learning. In Proceedings of the Nineteenth International Conference of Machine Learning, 27-35, Sydney, Australia: Morgan Kaufmann.
    • Zubek, V.B. and Dietterich, T. 2002. Pruning improves heuristic search for cost-sensitive learning. In Proceedings of the Nineteenth International Conference of Machine Learning, 27-35, Sydney, Australia: Morgan Kaufmann.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.