-
3
-
-
0242695689
-
Applying neural networks to on-line updated PID controller for nonlinear process control
-
Chen J., and Huang T.C. Applying neural networks to on-line updated PID controller for nonlinear process control. Journal of Process Control 14 (2004) 211-230
-
(2004)
Journal of Process Control
, vol.14
, pp. 211-230
-
-
Chen, J.1
Huang, T.C.2
-
4
-
-
34250751121
-
-
Dietterich, T.G., 1997. Hierarchical reinforcement learning with the MAXQ value function decomposition. Technical Report, Department of Computer Science, Oregon State University.
-
-
-
-
5
-
-
0033892685
-
MIMO fuzzy internal model control
-
Edgar C.R., and Postlethwaite B.E. MIMO fuzzy internal model control. Automatica 34 (2000) 867-877
-
(2000)
Automatica
, vol.34
, pp. 867-877
-
-
Edgar, C.R.1
Postlethwaite, B.E.2
-
6
-
-
0020602306
-
Dynamic modeling and reaction invariant control of pH
-
Gustafsson T.K., and Waller K.V. Dynamic modeling and reaction invariant control of pH. Chemical Engineering Science 38 3 (1983) 389-398
-
(1983)
Chemical Engineering Science
, vol.38
, Issue.3
, pp. 389-398
-
-
Gustafsson, T.K.1
Waller, K.V.2
-
9
-
-
4444305329
-
Linearizing feedforward-feedback control of pH process based on Wiener model
-
Kalafatis A.D., Wang L., and Cluett W.R. Linearizing feedforward-feedback control of pH process based on Wiener model. Journal of Process Control 15 (2005) 103-112
-
(2005)
Journal of Process Control
, vol.15
, pp. 103-112
-
-
Kalafatis, A.D.1
Wang, L.2
Cluett, W.R.3
-
11
-
-
0037523478
-
-
Kwok, D.P., Deng, Z.D, Li, C.M.K., Leung, T.P., Sun, Z.Q., Wong, J.C.K., 2003. Fuzzy neural control of systems with unknown dynamics using Q-learning strategies. In: Proceeding of The 12th IEEE International Conference on Fuzzy Systems, vol. 1, St. Louis, MO, USA, 25-28 May, pp. 482-487.
-
-
-
-
12
-
-
58149319587
-
Neural network modeling and control strategies for a pH process
-
Loh A.P., Looi K.O., and Fong K.F. Neural network modeling and control strategies for a pH process. Journal of Process Control 6 (1995) 355-362
-
(1995)
Journal of Process Control
, vol.6
, pp. 355-362
-
-
Loh, A.P.1
Looi, K.O.2
Fong, K.F.3
-
13
-
-
34250716278
-
-
McGovern, A., Sutton, R.S., 1998. Macro-actions in reinforcement learning: an empirical analysis. Amberst Technical Report No. 98-70.
-
-
-
-
14
-
-
2442537009
-
A genetic algorithm based approach to intelligent modelling and control of pH in reactor
-
Mwembeshi M.M., Kent C.A., and Salhi S. A genetic algorithm based approach to intelligent modelling and control of pH in reactor. Computer and Chemical Engineering 28 9 (2004) 1743-1757
-
(2004)
Computer and Chemical Engineering
, vol.28
, Issue.9
, pp. 1743-1757
-
-
Mwembeshi, M.M.1
Kent, C.A.2
Salhi, S.3
-
16
-
-
34250755285
-
-
Parr, R., 1998. Hierarchical Control and learning for Markov decision processes. Ph.D. Thesis, University of California at Berkeley.
-
-
-
-
17
-
-
34250738754
-
-
Precup, D., 2000. Temporal abstraction in reinforcement learning. Ph.D. Dissertation, Department of Computer Science, University of Massachusetts, Amherst.
-
-
-
-
18
-
-
0032599507
-
Application of neural networks to chemical process control
-
Ramirez N., and Jackson H. Application of neural networks to chemical process control. Computers and Chemical Engineering 37 (1999) 387-390
-
(1999)
Computers and Chemical Engineering
, vol.37
, pp. 387-390
-
-
Ramirez, N.1
Jackson, H.2
-
19
-
-
0345062532
-
High quality thermostat control by reinforcement learning-a case study
-
Carnegie Mellon University
-
Riedmiller M. High quality thermostat control by reinforcement learning-a case study. Proceedings of the Conald Workshop 1998 (1998), Carnegie Mellon University
-
(1998)
Proceedings of the Conald Workshop 1998
-
-
Riedmiller, M.1
-
20
-
-
0029700408
-
-
Sabharwal, J., Chen, J., 1996. Intelligent pH control using fuzzy invariant clustering. In: Proceedings of the 28th Southeastern Symposium on System Theory, Baton Rouge, LA, USA, pp. 514-518.
-
-
-
-
21
-
-
13844281155
-
Industrial catalytic process-phenol production
-
Schmidt R.J. Industrial catalytic process-phenol production. Applied Catalysis A: General 280 (2005) 89-103
-
(2005)
Applied Catalysis A: General
, vol.280
, pp. 89-103
-
-
Schmidt, R.J.1
-
22
-
-
35248821170
-
-
Schoknecht, R., Riedmiller, M., 2003. Learning to control at multiple time scales. In: Proceeding of ICANN 2003, Istanbul, Turkey, 26-29 June, pp. 479-487.
-
-
-
-
26
-
-
0033170372
-
Between MDPs and semi-MDPs: a framework for temporal abstraction in reinforcement learning
-
Sutton R.S., Precup D., and Singh S. Between MDPs and semi-MDPs: a framework for temporal abstraction in reinforcement learning. Artificial Intelligence 112 1-2 (1999) 181-211
-
(1999)
Artificial Intelligence
, vol.112
, Issue.1-2
, pp. 181-211
-
-
Sutton, R.S.1
Precup, D.2
Singh, S.3
-
27
-
-
0026188522
-
Nonlinear control of pH processes using the strong acid equivalent
-
Wright R.A., and Kravaris C. Nonlinear control of pH processes using the strong acid equivalent. Industrial and Engineering Chemistry Research 30 7 (1991) 1561-1572
-
(1991)
Industrial and Engineering Chemistry Research
, vol.30
, Issue.7
, pp. 1561-1572
-
-
Wright, R.A.1
Kravaris, C.2
|