메뉴 건너뛰기




Volumn 14, Issue 2, 2004, Pages 211-230

Applying neural networks to on-line updated PID controllers for nonlinear process control

Author keywords

Neural networks; Nonlinear modeling; PID controller

Indexed keywords

ALGORITHMS; COMPUTATIONAL COMPLEXITY; COMPUTER SIMULATION; LINEARIZATION; MATHEMATICAL MODELS; NEURAL NETWORKS; TWO TERM CONTROL SYSTEMS;

EID: 0242695689     PISSN: 09591524     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0959-1524(03)00039-8     Document Type: Article
Times cited : (224)

References (27)
  • 1
    • 0028495948 scopus 로고
    • Neural-net controller for nonlinear plants: Design approach through linearisation
    • Ahmed M.S., Tasadduq I.A. Neural-net controller for nonlinear plants. design approach through linearisation IEE Proc-Control Theory Appl. 141:1994;315.
    • (1994) IEE Proc-Control Theory Appl , vol.141 , pp. 315
    • Ahmed, M.S.1    Tasadduq, I.A.2
  • 3
    • 0025010309 scopus 로고
    • Use of neural nets for dynamic modeling and control of chemical process systems
    • Bhat N., McAvoy T.J. Use of neural nets for dynamic modeling and control of chemical process systems. Comput. Chem. Eng. 14:1990;573.
    • (1990) Comput. Chem. Eng. , vol.14 , pp. 573
    • Bhat, N.1    Mcavoy, T.J.2
  • 4
    • 84877479752 scopus 로고
    • Properties of neural networks with applications to modeling non-linear dynamic systems
    • Billings S.A., Jamaluddin H.B., Chen S. Properties of neural networks with applications to modeling non-linear dynamic systems. Int. J. Control. 55:1992;193.
    • (1992) Int. J. Control , vol.55 , pp. 193
    • Billings, S.A.1    Jamaluddin, H.B.2    Chen, S.3
  • 6
    • 0020798784 scopus 로고
    • A self-tuning controller with a PID structure
    • Cameron F., Seborg D.E. A self-tuning controller with a PID structure. Int. J. Control. 30:1983;401.
    • (1983) Int. J. Control , vol.30 , pp. 401
    • Cameron, F.1    Seborg, D.E.2
  • 7
    • 0031626274 scopus 로고    scopus 로고
    • Systematic derivations of model predictive control based on artificial neural network
    • Chen J. Systematic derivations of model predictive control based on artificial neural network. Chem. Engin. Commun. 164:1998;35.
    • (1998) Chem. Engin. Commun. , vol.164 , pp. 35
    • Chen, J.1
  • 8
    • 0018481241 scopus 로고
    • Self-tuning control
    • D.W. Clark, P.J. Gawthrop, Self-tuning control, in: Proc. IEE, Pt-D 126 (1979) 633.
    • (1979) Proc. IEE , vol.126 , Issue.PART-D , pp. 633
    • Clark, D.W.1    Gawthrop, P.J.2
  • 10
    • 0030654135 scopus 로고    scopus 로고
    • Neural network pole placement controller for nonlinear systems through linearisation
    • W. Fuli, L. Mingzhong, Y. Yinghua, Neural network pole placement controller for nonlinear systems through linearisation, American Control Conference (1997) 1984.
    • (1997) American Control Conference , pp. 1984
    • Fuli, W.1    Mingzhong, L.2    Yinghua, Y.3
  • 11
    • 0022690033 scopus 로고
    • Self-tuning PID controllers: Algorithm and implementation
    • Gawthrop P.J. Self-tuning PID controllers. algorithm and implementation IEEE Trans. Autom. Control. 31:1986;201.
    • (1986) IEEE Trans. Autom. Control , vol.31 , pp. 201
    • Gawthrop, P.J.1
  • 12
    • 0024880831 scopus 로고
    • Mutliplayer feedforward neural networks are universal approximators
    • Hornik K., Stinchcombe M., White H. Mutliplayer feedforward neural networks are universal approximators. Neural Networks. 2:1989;359.
    • (1989) Neural Networks , vol.2 , pp. 359
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 13
    • 0023104537 scopus 로고
    • Model selection and validation methods for non-linear systems
    • Leontaritis I.J., Billings S.A. Model selection and validation methods for non-linear systems. Int. J. Control. 45:1987;311.
    • (1987) Int. J. Control , vol.45 , pp. 311
    • Leontaritis, I.J.1    Billings, S.A.2
  • 14
    • 0027007477 scopus 로고
    • Nonlinear internal model control strategy for neural network models
    • Nahas E.P., Henson M.A., Seborg D.E. Nonlinear internal model control strategy for neural network models. Comput. Chem. Eng. 16:1992;1039.
    • (1992) Comput. Chem. Eng. , vol.16 , pp. 1039
    • Nahas, E.P.1    Henson, M.A.2    Seborg, D.E.3
  • 15
    • 0025399567 scopus 로고
    • Identification and control of dynamic systems using neural networks
    • Narendra K.S., Parthasarathy K. Identification and control of dynamic systems using neural networks. IEEE Trans. Neural Networks. 1:1990;4.
    • (1990) IEEE Trans. Neural Networks , vol.1 , pp. 4
    • Narendra, K.S.1    Parthasarathy, K.2
  • 16
    • 84987423405 scopus 로고
    • Control of nonlinear dynamical systems modeled by recurrent neural networks
    • Nikolaou M., Hanagandi V. Control of nonlinear dynamical systems modeled by recurrent neural networks. Am. Inst. Chem. Eng. J. 39:1993;1890.
    • (1993) Am. Inst. Chem. Eng. J. , vol.39 , pp. 1890
    • Nikolaou, M.1    Hanagandi, V.2
  • 17
    • 0021529611 scopus 로고
    • PID self-tuners: Some theoretical and practice aspects
    • Ortega R., Kelly R. PID self-tuners. Some theoretical and practice aspects IEEE Trans. Ind. Electron. 31:1984;312.
    • (1984) IEEE Trans. Ind. Electron. , vol.31 , pp. 312
    • Ortega, R.1    Kelly, R.2
  • 18
    • 0020810799 scopus 로고
    • Self-tuning PI control of a pH neutralization process
    • C.G. Proudfoot, P.J. Gawthrop, O.L.R. Jacobs, Self-tuning PI control of a pH neutralization process, in: Proc. IEE, Pt-D 130 (1983) 267.
    • (1983) Proc. IEE , vol.130 , Issue.PART-D , pp. 267
    • Proudfoot, C.G.1    Gawthrop, P.J.2    Jacobs, O.L.R.3
  • 19
    • 0026403834 scopus 로고
    • Direct and indirect model based control using artificial neural networks
    • Psichogios D.C., Ungar L.H. Direct and indirect model based control using artificial neural networks. Ind. Engin. Chem. Res. 30:1991;2564.
    • (1991) Ind. Engin. Chem. Res. , vol.30 , pp. 2564
    • Psichogios, D.C.1    Ungar, L.H.2
  • 20
    • 0023382454 scopus 로고
    • A parameter-adaptive PID controller with stepwise parameter optimization
    • Radke F., Isermann R. A parameter-adaptive PID controller with stepwise parameter optimization. Automatic. 23:1987;449.
    • (1987) Automatic , vol.23 , pp. 449
    • Radke, F.1    Isermann, R.2
  • 22
    • 84943237435 scopus 로고
    • Neuromorphic self-tuning PID controller
    • San Francisco
    • A. Saiful, S. Omatu, Neuromorphic self-tuning PID controller, in: Proc. 1993 IEEE ICNN, San Francisco (1993) 552.
    • (1993) Proc. 1993 IEEE ICNN , pp. 552
    • Saiful, A.1    Omatu, S.2
  • 24
    • 0027662333 scopus 로고
    • Integration of multilayer perceptron networks and linear dynamic models: A Hammerstein Modeling Approach
    • H.T. Su, T.J. McAvoy, Integration of multilayer perceptron networks and linear dynamic models: a Hammerstein Modeling Approach, Ind. Engin. Chem. Res. 32 (1993) 1927.
    • (1993) Ind. Engin. Chem. Res. , vol.32 , pp. 1927
    • Su, H.T.1    McAvoy, T.J.2
  • 25
    • 0242506765 scopus 로고
    • Self-tuning PID Controllers Based on Pole Placement
    • B. Wittenmark, Self-tuning PID Controllers Based on Pole Placement, Lund Institute Technical Report TFRT-7179, 1979.
    • (1979) Lund Institute Technical Report , vol.TFRT-7179
    • Wittenmark, B.1
  • 26
    • 0033103196 scopus 로고    scopus 로고
    • A Neural PID controller for the pH neutralization process
    • Y.-K. Yeo, T.-I. Kwon, A Neural PID controller for the pH neutralization process, Ind. Engin. Chem. Res. 38 (1999) 978.
    • (1999) Ind. Engin. Chem. Res. , vol.38 , pp. 978
    • Yeo, Y.-K.1    Kwon, T.-I.2
  • 27
    • 0006287217 scopus 로고    scopus 로고
    • On-line predictive control of a chemical process using neural network models
    • Beijing, PR China
    • D.L. Yu, J.B. Gomm, D. Williams, On-line predictive control of a chemical process using neural network models, in: IFAC 14th Triennial World Congress, Beijing, PR China, 1999, pp. 121-126.
    • (1999) IFAC 14th Triennial World Congress , pp. 121-126
    • Yu, D.L.1    Gomm, J.B.2    Williams, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.