-
3
-
-
0001084339
-
Phase-Transfer Catalysis
-
M. E. Halpern Ed, American Chemical Society, Washington, DC, ch. 7, pp
-
c) M. E. Halpern (Ed.), Phase-Transfer Catalysis, ACS Symposium Series 659, American Chemical Society, Washington, DC, 1996, ch. 7, pp 89-96;
-
(1996)
ACS Symposium Series
, vol.659
, pp. 89-96
-
-
-
9
-
-
0034714152
-
-
a) R. Chinchilla, P. Mazon, C. Nájera, Tetrahedron: Asymmetry 2000, 11, 3277-3281;
-
(2000)
Tetrahedron: Asymmetry
, vol.11
, pp. 3277-3281
-
-
Chinchilla, R.1
Mazon, P.2
Nájera, C.3
-
11
-
-
0035826551
-
-
c) B. Thierry, J.-C. Plaquevent, D. Cahard, Tetrahedron: Asymmetry 2001, 12, 983-986;
-
(2001)
Tetrahedron: Asymmetry
, vol.12
, pp. 983-986
-
-
Thierry, B.1
Plaquevent, J.-C.2
Cahard, D.3
-
13
-
-
0037458537
-
-
e) T. Danelli, R. Annunziata, M. Benaglia, M. Cinquini, F. Cozzi, G. Tocco, Tetrahedron: Asymmetry 2003, 14, 461-467;
-
(2003)
Tetrahedron: Asymmetry
, vol.14
, pp. 461-467
-
-
Danelli, T.1
Annunziata, R.2
Benaglia, M.3
Cinquini, M.4
Cozzi, F.5
Tocco, G.6
-
14
-
-
0038205367
-
-
f) B. Thierry, J.-C. Plaquevent, D. Cahard, Tetrahedron: Asymmetry 2003, 14, 1671-1677.
-
(2003)
Tetrahedron: Asymmetry
, vol.14
, pp. 1671-1677
-
-
Thierry, B.1
Plaquevent, J.-C.2
Cahard, D.3
-
15
-
-
0032569863
-
-
a) M. J. O'Donnell, F. Delgado, C. Hostettler, R. Schwesinger, Tetrahedron Lett. 1998, 39, 8775-8778;
-
(1998)
Tetrahedron Lett
, vol.39
, pp. 8775-8778
-
-
O'Donnell, M.J.1
Delgado, F.2
Hostettler, C.3
Schwesinger, R.4
-
16
-
-
0033553459
-
-
b) M. J. O'Donnell, F. Delgado, R. S. Pottorf, Tetrahedron 1999, 55, 6347-6362.
-
(1999)
Tetrahedron
, vol.55
, pp. 6347-6362
-
-
O'Donnell, M.J.1
Delgado, F.2
Pottorf, R.S.3
-
17
-
-
10044225569
-
-
a) H.-g. Park, M.-J. Kim, M.-K. Park, H.-J. Jung, J. Lee, Y.-J. Lee, B.-S. Jeong, J.-H. Lee, M.-S. Yoo, J.-M. Ku, S.-s. Jew, Tetrahedron Lett. 2005, 46, 93-95;
-
(2005)
Tetrahedron Lett
, vol.46
, pp. 93-95
-
-
Park, H.-G.1
Kim, M.-J.2
Park, M.-K.3
Jung, H.-J.4
Lee, J.5
Lee, Y.-J.6
Jeong, B.-S.7
Lee, J.-H.8
Yoo, M.-S.9
Ku, J.-M.10
Jew, S.-S.11
-
18
-
-
20044376663
-
-
b) H.-g. Park, M.-J. Kim, M.-K. Park, H.-J. Jung, J. Lee, S.-h. Choi, Y.-I Lee, B.-S. Jeong, J.-H. Lee, M.-S. Yoo, J.-M. Ku, S.-s. Jew, J. Org. Chem. 2005, 70, 1904-1906.
-
(2005)
J. Org. Chem
, vol.70
, pp. 1904-1906
-
-
Park, H.-G.1
Kim, M.-J.2
Park, M.-K.3
Jung, H.-J.4
Lee, J.5
Choi, S.-H.6
Lee, Y.-I.7
Jeong, B.-S.8
Lee, J.-H.9
Yoo, M.-S.10
Ku, J.-M.11
Jew, S.-S.12
-
20
-
-
0000234063
-
-
b) E. J. Corey, F. Xu, M. C. Noe, J. Am. Chem. Soc. 1997, 119, 12414-12415.
-
(1997)
J. Am. Chem. Soc
, vol.119
, pp. 12414-12415
-
-
Corey, E.J.1
Xu, F.2
Noe, M.C.3
-
21
-
-
25444504515
-
-
An application of the Wang-aldehyde resin-bound glycine ester with imine linkage to the synthesis of α,α-disubstituted amino acid derivatives was reported. M. Guinó, K. K, M, Hii, Org. Biomol. Chem. 2005, 3, 3188-3193
-
An application of the Wang-aldehyde resin-bound glycine ester with imine linkage to the synthesis of α,α-disubstituted amino acid derivatives was reported. M. Guinó, K. K. (M.) Hii, Org. Biomol. Chem. 2005, 3, 3188-3193.
-
-
-
-
22
-
-
0037473547
-
-
T. Ooi, M. Kameda, K. Maruoka, J. Am. Chem. Soc. 2003, 125, 5139-5151.
-
(2003)
J. Am. Chem. Soc
, vol.125
, pp. 5139-5151
-
-
Ooi, T.1
Kameda, M.2
Maruoka, K.3
-
23
-
-
34250682129
-
-
When only toluene was used without any water along with solid CsOH the chemical yield was 25% and the enantioselectivity was obtained in the ratio of (R)/(S) = 73.0:17.0.
-
When only toluene was used without any water along with solid CsOH the chemical yield was 25% and the enantioselectivity was obtained in the ratio of (R)/(S) = 73.0:17.0.
-
-
-
-
24
-
-
0035928478
-
-
a) S.-s. Jew, B.-S. Jeong, M.-S. Yoo, H. Huh, H.-g. Park, Chem. Commun. 2001, 1244-1245;
-
(2001)
Chem. Commun
, pp. 1244-1245
-
-
Jew, S.-S.1
Jeong, B.-S.2
Yoo, M.-S.3
Huh, H.4
Park, H.-G.5
-
25
-
-
0037118894
-
-
b) H.-g. Park, B.-S. Jeong, M.-S. Yoo, J.-H. Lee, M.-K. Park, Y.-J. Lee, M.-J. Kim, S.-s. Jew, Angew. Chem. Int. Ed. 2002, 41, 3036-3038.
-
(2002)
Angew. Chem. Int. Ed
, vol.41
, pp. 3036-3038
-
-
Park, H.-G.1
Jeong, B.-S.2
Yoo, M.-S.3
Lee, J.-H.4
Park, M.-K.5
Lee, Y.-J.6
Kim, M.-J.7
Jew, S.-S.8
-
26
-
-
34250675606
-
-
Total amount of solvent (i.e. organic solvent + water) was fixed to 1.05 mL per 100 mg of substrate 3.
-
Total amount of solvent (i.e. organic solvent + water) was fixed to 1.05 mL per 100 mg of substrate 3.
-
-
-
-
27
-
-
34250627531
-
-
For this experiment, 1.0, 2.5, 5.0 and 10.0 equiv. of solid CsOH was added, not an aqueous solution, to a premixed solvent mixture (toluene/chloroform/water, 9:1:0.5). After CsOH was completely dissolved, the other reagents were then added.
-
For this experiment, 1.0, 2.5, 5.0 and 10.0 equiv. of solid CsOH was added, not an aqueous solution, to a premixed solvent mixture (toluene/chloroform/water, 9:1:0.5). After CsOH was completely dissolved, the other reagents were then added.
-
-
-
-
28
-
-
34250657300
-
-
It is quite troublesome to handle solid CsOH because of its highly hygroscopic character
-
It is quite troublesome to handle solid CsOH because of its highly hygroscopic character.
-
-
-
-
29
-
-
34250653582
-
-
Results from the variation of reaction temperature (e.g. room temp, and -20°C, the other reaction conditions were the same as that of Entry 12 in Table 1 except for the reaction temperature): i) at room temp., reaction time: 72 h, chemical yield: 73%, enantiomeric ratio: (R/S) = 91.0:9.0. ii) at -20°C, reaction time: 144 h, chemical yield: 34%, enantiomeric ratio: (R/ S) = 95.0:5.0.
-
Results from the variation of reaction temperature (e.g. room temp, and -20°C, the other reaction conditions were the same as that of Entry 12 in Table 1 except for the reaction temperature): i) at room temp., reaction time: 72 h, chemical yield: 73%, enantiomeric ratio: (R/S) = 91.0:9.0. ii) at -20°C, reaction time: 144 h, chemical yield: 34%, enantiomeric ratio: (R/ S) = 95.0:5.0.
-
-
-
-
30
-
-
34250656488
-
-
The aldimines have been used in the synthesis of α,α- dialkylamino acids in solution-phase systems. However, the solid-supported aldimines (3 or 8) gave only monoalkylation products under the reaction conditions used in this paper
-
The aldimines have been used in the synthesis of α,α- dialkylamino acids in solution-phase systems. However, the solid-supported aldimines (3 or 8) gave only monoalkylation products under the reaction conditions used in this paper.
-
-
-
|