메뉴 건너뛰기




Volumn 87, Issue 2-3, 2007, Pages 109-132

Coordinate-free characterization of the symmetry classes of elasticity tensors

Author keywords

Coordinate free characterization; Elasticity tensor; Natural basis; Symmetry class

Indexed keywords

CRYSTAL SYMMETRY; ELASTICITY; PROBLEM SOLVING;

EID: 34250620137     PISSN: 03743535     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10659-007-9099-z     Document Type: Article
Times cited : (67)

References (26)
  • 1
    • 84995007716 scopus 로고
    • A geometrical picture of anisotropic elastic tensors
    • Backus, G.: A geometrical picture of anisotropic elastic tensors. Rev. Geophys. Space Phys. 8(3), 633-671 (1970)
    • (1970) Rev. Geophys. Space Phys , vol.8 , Issue.3 , pp. 633-671
    • Backus, G.1
  • 2
    • 34250618148 scopus 로고    scopus 로고
    • Baerheim, R.: Coordinate free representation of the hierarchically symmetric tensor of rank 4 in determination of symmetry. Ph.D. thesis. Geologica Ultraiectina, 159 (1998)
    • Baerheim, R.: Coordinate free representation of the hierarchically symmetric tensor of rank 4 in determination of symmetry. Ph.D. thesis. Geologica Ultraiectina, vol. 159 (1998)
  • 3
    • 0028371062 scopus 로고
    • On the polynomial invariants of elasticity tensor
    • Boehler, J.P., Kirilov Jr., A.A., Onat, E.T.: On the polynomial invariants of elasticity tensor. J. Elast. 34, 97-110 (1994)
    • (1994) J. Elast , vol.34 , pp. 97-110
    • Boehler, J.P.1    Kirilov Jr., A.A.2    Onat, E.T.3
  • 5
    • 0035499645 scopus 로고    scopus 로고
    • A new proof that the number of linear elastic symmetries is eight
    • Chadwick, P., Vianello, M., Cowin, S.C.: A new proof that the number of linear elastic symmetries is eight. J. Mech. Phys. Solids 49, 2471-2492 (2001)
    • (2001) J. Mech. Phys. Solids , vol.49 , pp. 2471-2492
    • Chadwick, P.1    Vianello, M.2    Cowin, S.C.3
  • 7
    • 0001473923 scopus 로고
    • On the identification of material symmetry for anisotropic elastic materials
    • Cowin, S.C., Mehrabadi, M.M.: On the identification of material symmetry for anisotropic elastic materials. Q. J. Mech. Appl. Math. 40, 451-476 (1987)
    • (1987) Q. J. Mech. Appl. Math , vol.40 , pp. 451-476
    • Cowin, S.C.1    Mehrabadi, M.M.2
  • 8
    • 44049110894 scopus 로고
    • The structure of the linear anisotropic elastic symmetries
    • Cowin, S.C., Mehrabadi, M.M.: The structure of the linear anisotropic elastic symmetries. J. Mech. Phys. Solids 40(7), 1459-1471 (1992)
    • (1992) J. Mech. Phys. Solids , vol.40 , Issue.7 , pp. 1459-1471
    • Cowin, S.C.1    Mehrabadi, M.M.2
  • 10
    • 0030141773 scopus 로고    scopus 로고
    • Symmetry classes for elasticity tensors
    • Forte, S., Vianello, M.: Symmetry classes for elasticity tensors. J. Elast. 43(2), 81-108 (1996)
    • (1996) J. Elast , vol.43 , Issue.2 , pp. 81-108
    • Forte, S.1    Vianello, M.2
  • 11
    • 0031275065 scopus 로고    scopus 로고
    • Symmetry classes and harmonic decomposition for photoelasticity tensors
    • Forte, S., Vianello, M.: Symmetry classes and harmonic decomposition for photoelasticity tensors. Int. J. Eng. Sci. 35(14), 1317-1326 (1997)
    • (1997) Int. J. Eng. Sci , vol.35 , Issue.14 , pp. 1317-1326
    • Forte, S.1    Vianello, M.2
  • 14
    • 34250690159 scopus 로고    scopus 로고
    • Lord Kelvin (Thompson, W.): On six principal strains of an elastic solid. Phil. Trans. R. Soc. 166, 495-498 (1856)
    • Lord Kelvin (Thompson, W.): On six principal strains of an elastic solid. Phil. Trans. R. Soc. 166, 495-498 (1856)
  • 16
    • 32244438707 scopus 로고    scopus 로고
    • Optimal orientation of anisotropic solids
    • Norris, A.N.: Optimal orientation of anisotropic solids. Q. J. Mech. Appl. Math. 59, 29-53 (2006)
    • (2006) Q. J. Mech. Appl. Math , vol.59 , pp. 29-53
    • Norris, A.N.1
  • 17
    • 0025387418 scopus 로고
    • Eigentensors of linear anisotropic elastic materials
    • Mehrabadi, M.M., Cowin, S.C.: Eigentensors of linear anisotropic elastic materials. Q. J. Mech. Appl. Math. 43(1), 15-41 (1990)
    • (1990) Q. J. Mech. Appl. Math , vol.43 , Issue.1 , pp. 15-41
    • Mehrabadi, M.M.1    Cowin, S.C.2
  • 18
    • 1842688585 scopus 로고
    • On Hooke's law
    • Rychlewski, J.: On Hooke's law. Prikl. Mat. Meh. 48(3), 303-314 (1984)
    • (1984) Prikl. Mat. Meh , vol.48 , Issue.3 , pp. 303-314
    • Rychlewski, J.1
  • 19
    • 0000188771 scopus 로고
    • Unconventional approach to linear elasticity
    • Rychlewski, J.: Unconventional approach to linear elasticity. Arch. Mech. 47(2), 149-171 (1995)
    • (1995) Arch. Mech , vol.47 , Issue.2 , pp. 149-171
    • Rychlewski, J.1
  • 20
    • 0002797140 scopus 로고    scopus 로고
    • Rychlewski, J.: A qualitative approach to Hooke's tensors. Part I. Arch. Mech. 52(4,5), 737-759 (2000)
    • Rychlewski, J.: A qualitative approach to Hooke's tensors. Part I. Arch. Mech. 52(4,5), 737-759 (2000)
  • 21
    • 0027001124 scopus 로고
    • Spectral decomposition of the elasticity tensor
    • Sutcliffe, S.: Spectral decomposition of the elasticity tensor. J. Appl. Mech. 59, 762-773 (1992)
    • (1992) J. Appl. Mech , vol.59 , pp. 762-773
    • Sutcliffe, S.1
  • 22
    • 0242274305 scopus 로고    scopus 로고
    • Generalized Cowin-Mehrabadi theorems and a direct proof that the number of linear elastic symmetries is eight
    • Ting, T.C.T.: Generalized Cowin-Mehrabadi theorems and a direct proof that the number of linear elastic symmetries is eight. Int. J. Solids Struct. 40, 7129-7142 (2003)
    • (2003) Int. J. Solids Struct , vol.40 , pp. 7129-7142
    • Ting, T.C.T.1
  • 24
    • 0000944343 scopus 로고
    • Fourth-rank tensors of the thirty-two crystal classes: Multiplication tables
    • Walpole, L.T.: Fourth-rank tensors of the thirty-two crystal classes: multiplication tables. Proc. R. Soc. Lond. A 391, 149-179 (1984)
    • (1984) Proc. R. Soc. Lond. A , vol.391 , pp. 149-179
    • Walpole, L.T.1
  • 26
    • 34249918305 scopus 로고
    • On the completeness of the crystallographic symmetries in the description of the symmetries of the elastic tensor
    • Hou, Y.-Z., Del Piero, G.: On the completeness of the crystallographic symmetries in the description of the symmetries of the elastic tensor. J. Elast. 25, 203-246 (1991)
    • (1991) J. Elast , vol.25 , pp. 203-246
    • Hou, Y.-Z.1    Del Piero, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.