-
1
-
-
84995007716
-
A geometrical picture of anisotropic elastic tensors
-
Backus, G.: A geometrical picture of anisotropic elastic tensors. Rev. Geophys. Space Phys. 8(3), 633-671 (1970)
-
(1970)
Rev. Geophys. Space Phys
, vol.8
, Issue.3
, pp. 633-671
-
-
Backus, G.1
-
2
-
-
34250618148
-
-
Baerheim, R.: Coordinate free representation of the hierarchically symmetric tensor of rank 4 in determination of symmetry. Ph.D. thesis. Geologica Ultraiectina, 159 (1998)
-
Baerheim, R.: Coordinate free representation of the hierarchically symmetric tensor of rank 4 in determination of symmetry. Ph.D. thesis. Geologica Ultraiectina, vol. 159 (1998)
-
-
-
-
3
-
-
0028371062
-
On the polynomial invariants of elasticity tensor
-
Boehler, J.P., Kirilov Jr., A.A., Onat, E.T.: On the polynomial invariants of elasticity tensor. J. Elast. 34, 97-110 (1994)
-
(1994)
J. Elast
, vol.34
, pp. 97-110
-
-
Boehler, J.P.1
Kirilov Jr., A.A.2
Onat, E.T.3
-
4
-
-
10244270606
-
Material symmetries of elasticity tensors
-
Bóna, A., Bucataru, I., Slawinski, M.A.: Material symmetries of elasticity tensors. Q. J. Mech. Appl. Math. 57(4), 584-598 (2004)
-
(2004)
Q. J. Mech. Appl. Math
, vol.57
, Issue.4
, pp. 584-598
-
-
Bóna, A.1
Bucataru, I.2
Slawinski, M.A.3
-
5
-
-
0035499645
-
A new proof that the number of linear elastic symmetries is eight
-
Chadwick, P., Vianello, M., Cowin, S.C.: A new proof that the number of linear elastic symmetries is eight. J. Mech. Phys. Solids 49, 2471-2492 (2001)
-
(2001)
J. Mech. Phys. Solids
, vol.49
, pp. 2471-2492
-
-
Chadwick, P.1
Vianello, M.2
Cowin, S.C.3
-
7
-
-
0001473923
-
On the identification of material symmetry for anisotropic elastic materials
-
Cowin, S.C., Mehrabadi, M.M.: On the identification of material symmetry for anisotropic elastic materials. Q. J. Mech. Appl. Math. 40, 451-476 (1987)
-
(1987)
Q. J. Mech. Appl. Math
, vol.40
, pp. 451-476
-
-
Cowin, S.C.1
Mehrabadi, M.M.2
-
8
-
-
44049110894
-
The structure of the linear anisotropic elastic symmetries
-
Cowin, S.C., Mehrabadi, M.M.: The structure of the linear anisotropic elastic symmetries. J. Mech. Phys. Solids 40(7), 1459-1471 (1992)
-
(1992)
J. Mech. Phys. Solids
, vol.40
, Issue.7
, pp. 1459-1471
-
-
Cowin, S.C.1
Mehrabadi, M.M.2
-
10
-
-
0030141773
-
Symmetry classes for elasticity tensors
-
Forte, S., Vianello, M.: Symmetry classes for elasticity tensors. J. Elast. 43(2), 81-108 (1996)
-
(1996)
J. Elast
, vol.43
, Issue.2
, pp. 81-108
-
-
Forte, S.1
Vianello, M.2
-
11
-
-
0031275065
-
Symmetry classes and harmonic decomposition for photoelasticity tensors
-
Forte, S., Vianello, M.: Symmetry classes and harmonic decomposition for photoelasticity tensors. Int. J. Eng. Sci. 35(14), 1317-1326 (1997)
-
(1997)
Int. J. Eng. Sci
, vol.35
, Issue.14
, pp. 1317-1326
-
-
Forte, S.1
Vianello, M.2
-
14
-
-
34250690159
-
-
Lord Kelvin (Thompson, W.): On six principal strains of an elastic solid. Phil. Trans. R. Soc. 166, 495-498 (1856)
-
Lord Kelvin (Thompson, W.): On six principal strains of an elastic solid. Phil. Trans. R. Soc. 166, 495-498 (1856)
-
-
-
-
16
-
-
32244438707
-
Optimal orientation of anisotropic solids
-
Norris, A.N.: Optimal orientation of anisotropic solids. Q. J. Mech. Appl. Math. 59, 29-53 (2006)
-
(2006)
Q. J. Mech. Appl. Math
, vol.59
, pp. 29-53
-
-
Norris, A.N.1
-
17
-
-
0025387418
-
Eigentensors of linear anisotropic elastic materials
-
Mehrabadi, M.M., Cowin, S.C.: Eigentensors of linear anisotropic elastic materials. Q. J. Mech. Appl. Math. 43(1), 15-41 (1990)
-
(1990)
Q. J. Mech. Appl. Math
, vol.43
, Issue.1
, pp. 15-41
-
-
Mehrabadi, M.M.1
Cowin, S.C.2
-
18
-
-
1842688585
-
On Hooke's law
-
Rychlewski, J.: On Hooke's law. Prikl. Mat. Meh. 48(3), 303-314 (1984)
-
(1984)
Prikl. Mat. Meh
, vol.48
, Issue.3
, pp. 303-314
-
-
Rychlewski, J.1
-
19
-
-
0000188771
-
Unconventional approach to linear elasticity
-
Rychlewski, J.: Unconventional approach to linear elasticity. Arch. Mech. 47(2), 149-171 (1995)
-
(1995)
Arch. Mech
, vol.47
, Issue.2
, pp. 149-171
-
-
Rychlewski, J.1
-
20
-
-
0002797140
-
-
Rychlewski, J.: A qualitative approach to Hooke's tensors. Part I. Arch. Mech. 52(4,5), 737-759 (2000)
-
Rychlewski, J.: A qualitative approach to Hooke's tensors. Part I. Arch. Mech. 52(4,5), 737-759 (2000)
-
-
-
-
21
-
-
0027001124
-
Spectral decomposition of the elasticity tensor
-
Sutcliffe, S.: Spectral decomposition of the elasticity tensor. J. Appl. Mech. 59, 762-773 (1992)
-
(1992)
J. Appl. Mech
, vol.59
, pp. 762-773
-
-
Sutcliffe, S.1
-
22
-
-
0242274305
-
Generalized Cowin-Mehrabadi theorems and a direct proof that the number of linear elastic symmetries is eight
-
Ting, T.C.T.: Generalized Cowin-Mehrabadi theorems and a direct proof that the number of linear elastic symmetries is eight. Int. J. Solids Struct. 40, 7129-7142 (2003)
-
(2003)
Int. J. Solids Struct
, vol.40
, pp. 7129-7142
-
-
Ting, T.C.T.1
-
24
-
-
0000944343
-
Fourth-rank tensors of the thirty-two crystal classes: Multiplication tables
-
Walpole, L.T.: Fourth-rank tensors of the thirty-two crystal classes: multiplication tables. Proc. R. Soc. Lond. A 391, 149-179 (1984)
-
(1984)
Proc. R. Soc. Lond. A
, vol.391
, pp. 149-179
-
-
Walpole, L.T.1
-
25
-
-
0032216516
-
The anisotropic Hooke's law for cancellous bone and wood
-
Yang, G., Kabel, J., Van Rietbergen, B., Odgaard, A., Huiskes, R., Cowin, S.C.: The anisotropic Hooke's law for cancellous bone and wood. J. Elast. 53, 125-146 (1999)
-
(1999)
J. Elast
, vol.53
, pp. 125-146
-
-
Yang, G.1
Kabel, J.2
Van Rietbergen, B.3
Odgaard, A.4
Huiskes, R.5
Cowin, S.C.6
-
26
-
-
34249918305
-
On the completeness of the crystallographic symmetries in the description of the symmetries of the elastic tensor
-
Hou, Y.-Z., Del Piero, G.: On the completeness of the crystallographic symmetries in the description of the symmetries of the elastic tensor. J. Elast. 25, 203-246 (1991)
-
(1991)
J. Elast
, vol.25
, pp. 203-246
-
-
Hou, Y.-Z.1
Del Piero, G.2
|