메뉴 건너뛰기




Volumn 58, Issue 2, 2007, Pages 103-117

Handling of missing data in psychological research: Problems and solutions;Umgang mit Fehlenden Werten in der Psychologischen Forschung Probleme und Lösungen

Author keywords

Missing data; Multiple imputation; Structurai equation modeling

Indexed keywords


EID: 34250020820     PISSN: 00333042     EISSN: None     Source Type: Journal    
DOI: 10.1026/0033-3042.58.2.103     Document Type: Article
Times cited : (250)

References (59)
  • 1
    • 0004093524 scopus 로고    scopus 로고
    • Thousands Oaks, CA: Sage
    • Allison, P. D. (2001). Missing data. Thousands Oaks, CA: Sage.
    • (2001) Missing data
    • Allison, P.D.1
  • 2
    • 0002914202 scopus 로고    scopus 로고
    • Full information estimation in the presence of incomplete data
    • G. A. Marcoulides & R. E. Schumacker Eds, Mahwah, NJ: Lawrence Erlbaum Publishers
    • Arbuckle, J. L. (1996). Full information estimation in the presence of incomplete data. In G. A. Marcoulides & R. E. Schumacker (Eds.), Advanced structural equation modeling (pp. 243-277). Mahwah, NJ: Lawrence Erlbaum Publishers.
    • (1996) Advanced structural equation modeling , pp. 243-277
    • Arbuckle, J.L.1
  • 3
    • 34250027535 scopus 로고    scopus 로고
    • Baumert, J., Bos, W. & Lehmann, R. (Hrsg.). (2000). TIMSS/III. Dritte Internationale Mathematik- und Naturwissenschaftsstudie - Mathematische und naturwissenschaftliche Bildung am Ende der Schullaufbahn: 1. Mathematische und naturwissenschaftliche Grundbildung am Ende der Pflichtschulzeit. Opladen: Leske + Budrich.
    • Baumert, J., Bos, W. & Lehmann, R. (Hrsg.). (2000). TIMSS/III. Dritte Internationale Mathematik- und Naturwissenschaftsstudie - Mathematische und naturwissenschaftliche Bildung am Ende der Schullaufbahn: Vol. 1. Mathematische und naturwissenschaftliche Grundbildung am Ende der Pflichtschulzeit. Opladen: Leske + Budrich.
  • 4
    • 0003487778 scopus 로고    scopus 로고
    • Baumert, J, Klieme, E, Neubrand, J, Prenzel, M, Schiefele, U, Schneider, W, Stanat, P, Tillmann, K.-J. & Weiß, M, Hrsg, Opladen: Leske, Budrich
    • Baumert, J., Klieme, E., Neubrand, J., Prenzel, M., Schiefele, U., Schneider, W., Stanat, P., Tillmann, K.-J. & Weiß, M. (Hrsg.). (2001). PISA 2000. Basiskompetenzen von Schülerinnen und Schülern im internationalen Vergleich. Opladen: Leske + Budrich.
    • (2001) PISA 2000. Basiskompetenzen von Schülerinnen und Schülern im internationalen Vergleich
  • 5
    • 0001342385 scopus 로고
    • A method of estimation of missing values in multivariate data suitable for use with an electronic Computer
    • Bück, S. F. (1960). A method of estimation of missing values in multivariate data suitable for use with an electronic Computer. Journal of the Royal Statistical Society, 22, 302-306.
    • (1960) Journal of the Royal Statistical Society , vol.22 , pp. 302-306
    • Bück, S.F.1
  • 6
    • 0041611508 scopus 로고    scopus 로고
    • Nearest-neighbor imputation for survey date
    • Chen, J. & Shao, J. (2000). Nearest-neighbor imputation for survey date. Journal of Official Statistics, 16, 583-599.
    • (2000) Journal of Official Statistics , vol.16 , pp. 583-599
    • Chen, J.1    Shao, J.2
  • 7
    • 1842665177 scopus 로고    scopus 로고
    • Jackknife variance estimation for nearest-neighbor imputation
    • Chen, J. & Shao, J. (2001). Jackknife variance estimation for nearest-neighbor imputation. Journal of the American Statistical Association, 95, 260-269.
    • (2001) Journal of the American Statistical Association , vol.95 , pp. 260-269
    • Chen, J.1    Shao, J.2
  • 9
    • 0035755636 scopus 로고    scopus 로고
    • A comparison of inclusive and restrictive strategies in modern missing data procedures
    • Collins, L. M., Schafer, J. L. & Kam, C.-M. (2001). A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods, 6, 330-351.
    • (2001) Psychological Methods , vol.6 , pp. 330-351
    • Collins, L.M.1    Schafer, J.L.2    Kam, C.-M.3
  • 10
    • 34250007061 scopus 로고    scopus 로고
    • Prevention is the better cure: How to reduce missing data
    • De Leeuw, E. D. (1999). Prevention is the better cure: How to reduce missing data. Kwantitative Methoden, 62,39-55.
    • (1999) Kwantitative Methoden , vol.62 , pp. 39-55
    • De Leeuw, E.D.1
  • 13
    • 24944588325 scopus 로고    scopus 로고
    • Lernen oder Freunde treffen? Lernmotivation unter den Bedingungen multipler Handlungsoptionen
    • Dietz, F., Schmid, S. & Fries, S. (2005). Lernen oder Freunde treffen? Lernmotivation unter den Bedingungen multipler Handlungsoptionen. Zeitschrift für Pädagogische Psychologie, 19,173-189.
    • (2005) Zeitschrift für Pädagogische Psychologie , vol.19 , pp. 173-189
    • Dietz, F.1    Schmid, S.2    Fries, S.3
  • 14
    • 34249996962 scopus 로고    scopus 로고
    • Imputation methods for handling itemnonresponse in the social sciences: A methodological review
    • Durrant, G. B. (2005). Imputation methods for handling itemnonresponse in the social sciences: A methodological review. National Centre for Research Methods Working Paper Series.
    • (2005) National Centre for Research Methods Working Paper Series
    • Durrant, G.B.1
  • 15
    • 0002543932 scopus 로고    scopus 로고
    • A primer on maximum likelihood algorithms available for use with missing data
    • Enders, C. K. (2001a). A primer on maximum likelihood algorithms available for use with missing data. Structural Equation Modeling, 8, 128-141.
    • (2001) Structural Equation Modeling , vol.8 , pp. 128-141
    • Enders, C.K.1
  • 16
    • 0035756118 scopus 로고    scopus 로고
    • The impact of nonnormality on full information maximum-likelihood estimation for structural equation models with missing data
    • Enders, C. K. (2001b). The impact of nonnormality on full information maximum-likelihood estimation for structural equation models with missing data. Psychological Methods, 6, 352-370.
    • (2001) Psychological Methods , vol.6 , pp. 352-370
    • Enders, C.K.1
  • 18
    • 0001581342 scopus 로고
    • Estimation for the multiple factor model when data are missing
    • Finkbeiner, C. (1979). Estimation for the multiple factor model when data are missing. Psychometrika, 44, 409-420.
    • (1979) Psychometrika , vol.44 , pp. 409-420
    • Finkbeiner, C.1
  • 19
    • 33744955083 scopus 로고    scopus 로고
    • Poststratification and weighting adjustments
    • R. M. Groves, D. A. Dillman, J. L. Eltinge & R. J. A. Little Eds, New York: Wiley
    • Gelman, A. & Carlin, J. B. (2002). Poststratification and weighting adjustments. In R. M. Groves, D. A. Dillman, J. L. Eltinge & R. J. A. Little (Eds.), Survey nonresponse (pp. 289-314). New York: Wiley.
    • (2002) Survey nonresponse , pp. 289-314
    • Gelman, A.1    Carlin, J.B.2
  • 21
    • 0347249765 scopus 로고    scopus 로고
    • Adding missing-data-relevant variables to FIML-based structural equation models
    • Graham, J. W. (2003). Adding missing-data-relevant variables to FIML-based structural equation models. Structural Equation Modeling, 10, 80-100.
    • (2003) Structural Equation Modeling , vol.10 , pp. 80-100
    • Graham, J.W.1
  • 22
    • 1242302480 scopus 로고    scopus 로고
    • Methods for handling missing data
    • J. A. Schinka & W. F. Velicer Eds, New York: John Wiley & Sons
    • Graham, J. W., Cumsille, P. E. & Elek-Fisk, E. (2003). Methods for handling missing data. In J. A. Schinka & W. F. Velicer (Eds.), Handbook of psychology: Research methods in psychology (Vol. 2, pp. 87-114). New York: John Wiley & Sons.
    • (2003) Handbook of psychology: Research methods in psychology , vol.2 , pp. 87-114
    • Graham, J.W.1    Cumsille, P.E.2    Elek-Fisk, E.3
  • 23
    • 0003245614 scopus 로고    scopus 로고
    • On the performance of multiple imputation for multivariate data with small sample size
    • R. Hoyle Ed, Thousand Oaks, CA: Sage
    • Graham, J. W. & Schafer, J. L. (1999). On the performance of multiple imputation for multivariate data with small sample size. In R. Hoyle (Ed.), Statistical strategies for small sample research (pp. 1-29). Thousand Oaks, CA: Sage.
    • (1999) Statistical strategies for small sample research , pp. 1-29
    • Graham, J.W.1    Schafer, J.L.2
  • 24
    • 0003251507 scopus 로고    scopus 로고
    • Planned missing data designs in the analysis of change
    • L. M. Collins & A. G. Sayer Eds, Washington, DC: American Psychological Association
    • Graham, J. W., Taylor, B. J. & Cumsille, P. E. (2001). Planned missing data designs in the analysis of change. In L. M. Collins & A. G. Sayer (Eds.), New methods for the analysis of change (pp. 335-353). Washington, DC: American Psychological Association.
    • (2001) New methods for the analysis of change , pp. 335-353
    • Graham, J.W.1    Taylor, B.J.2    Cumsille, P.E.3
  • 25
    • 23044525261 scopus 로고    scopus 로고
    • Multiple imputation in practice: Comparison of software packages for regression models with missing variables
    • Horton, N. J. & Lipsitz, S. R. (2001). Multiple imputation in practice: Comparison of software packages for regression models with missing variables. The American Statistican, 55, 244-254.
    • (2001) The American Statistican , vol.55 , pp. 244-254
    • Horton, N.J.1    Lipsitz, S.R.2
  • 26
    • 0000528136 scopus 로고    scopus 로고
    • A review of current software for handling missing data
    • Hox, J. J. (1999). A review of current software for handling missing data. Kwantitative Methoden, 62, 123-138.
    • (1999) Kwantitative Methoden , vol.62 , pp. 123-138
    • Hox, J.J.1
  • 27
    • 0035285349 scopus 로고    scopus 로고
    • Analyzing incomplete political science data: An alternative algorithm for multiple imputation
    • King, G., Honacker, J., Joseph, A. & Scheve, K. (2001 ). Analyzing incomplete political science data: An alternative algorithm for multiple imputation. American Political Science Review, 95, 49-69.
    • (2001) American Political Science Review , vol.95 , pp. 49-69
    • King, G.1    Honacker, J.2    Joseph, A.3    Scheve, K.4
  • 29
    • 84936853890 scopus 로고
    • A test of missing completely at random for multivariate data with missing values
    • Little, R. J. A. (1988). A test of missing completely at random for multivariate data with missing values. Journal of the American Statistical Association, 83, 1198-1202.
    • (1988) Journal of the American Statistical Association , vol.83 , pp. 1198-1202
    • Little, R.J.A.1
  • 30
  • 32
    • 27644434455 scopus 로고    scopus 로고
    • Social participation attenuates decline in perceptual speed in old and very old age
    • Lövdén, M., Ghisletta, P. & Lindenberger, U. (2005). Social participation attenuates decline in perceptual speed in old and very old age. Psychology and Aging, 20, 423-434.
    • (2005) Psychology and Aging , vol.20 , pp. 423-434
    • Lövdén, M.1    Ghisletta, P.2    Lindenberger, U.3
  • 33
    • 85047669360 scopus 로고    scopus 로고
    • Principles and practice in reporting structural equation analyses
    • McDonald, R. P. & Ho, M.-H. R. (2002). Principles and practice in reporting structural equation analyses. Psychological Methods, 7, 64-82.
    • (2002) Psychological Methods , vol.7 , pp. 64-82
    • McDonald, R.P.1    Ho, M.-H.R.2
  • 34
  • 35
    • 0001010853 scopus 로고
    • On structural equation modeling with data that are not missing completely at random
    • Muthén, B., Kaplan, D. & Hollis, M. (1987). On structural equation modeling with data that are not missing completely at random. Psychometrika, 42, 431-462.
    • (1987) Psychometrika , vol.42 , pp. 431-462
    • Muthén, B.1    Kaplan, D.2    Hollis, M.3
  • 36
    • 33750171398 scopus 로고    scopus 로고
    • PRIMA: A new multiple imputation procedure for binary variables
    • Münnich, R. & Rässler, S. (2005). PRIMA: A new multiple imputation procedure for binary variables. Journal of Official Statistics, 21, 325-341.
    • (2005) Journal of Official Statistics , vol.21 , pp. 325-341
    • Münnich, R.1    Rässler, S.2
  • 37
    • 0038009574 scopus 로고    scopus 로고
    • Longitudinal modeling with randomly and systematically missing data: A simulation of ad hoc, maximum likelihood, and multiple imputation techniques
    • Newman, D. A. (2003). Longitudinal modeling with randomly and systematically missing data: A simulation of ad hoc, maximum likelihood, and multiple imputation techniques. Organizational Research Methods, 6, 328-362.
    • (2003) Organizational Research Methods , vol.6 , pp. 328-362
    • Newman, D.A.1
  • 38
    • 12744272198 scopus 로고    scopus 로고
    • Missing data in educational research: A review of reporting practices and suggestions for improvement
    • Peugh, J. L. & Enders, C. K. (2004). Missing data in educational research: A review of reporting practices and suggestions for improvement. Review of Educational Research, 74, 525-556.
    • (2004) Review of Educational Research , vol.74 , pp. 525-556
    • Peugh, J.L.1    Enders, C.K.2
  • 40
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 581-592.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 43
    • 0345241817 scopus 로고    scopus 로고
    • Nested multiple imputation of NMES via partially incompatible MCMC
    • Rubin, D. B. (2003). Nested multiple imputation of NMES via partially incompatible MCMC. Statistica Neerlandica, 57, 3-18.
    • (2003) Statistica Neerlandica , vol.57 , pp. 3-18
    • Rubin, D.B.1
  • 45
    • 34250016768 scopus 로고    scopus 로고
    • Schafer, J. L, 1999, NORM: Multiple Imputation of Incomplete Data under a Normal Model [Computer Software, Retrieved from:, 4.10.2004
    • Schafer, J. L. (1999). NORM: Multiple Imputation of Incomplete Data under a Normal Model [Computer Software]. Retrieved from: http://methodology.psu.edu [4.10.2004].
  • 46
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: Our view of the state of the art
    • Schafer, J. L. & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7, 147-177.
    • (2002) Psychological Methods , vol.7 , pp. 147-177
    • Schafer, J.L.1    Graham, J.W.2
  • 47
    • 0032219074 scopus 로고    scopus 로고
    • Multiple imputation for multivariate missing-data problems: A data analyst's perspective
    • Schafer, J. L. & Olsen, M. K. (1998). Multiple imputation for multivariate missing-data problems: A data analyst's perspective. Multivariate Behavioral Research, 33, 545-571.
    • (1998) Multivariate Behavioral Research , vol.33 , pp. 545-571
    • Schafer, J.L.1    Olsen, M.K.2
  • 48
    • 0036017469 scopus 로고    scopus 로고
    • Computational strategies for multivariate linear mixed-effects models with missing values
    • Schafer, J. L. & Yucel, R. M. (2002). Computational strategies for multivariate linear mixed-effects models with missing values. Journal of Computational and Graphical Statistics, 11, 437-457.
    • (2002) Journal of Computational and Graphical Statistics , vol.11 , pp. 437-457
    • Schafer, J.L.1    Yucel, R.M.2
  • 49
    • 0842303569 scopus 로고    scopus 로고
    • Investigation and treatment of missing item scores in test and questionnaire data
    • Sijtsma, K. & van der Ark, L. (2003). Investigation and treatment of missing item scores in test and questionnaire data. Multivariate Behavioral Research, 38, 505-528.
    • (2003) Multivariate Behavioral Research , vol.38 , pp. 505-528
    • Sijtsma, K.1    van der Ark, L.2
  • 50
    • 0035748192 scopus 로고    scopus 로고
    • The use of multiple imputation for the analysis of missing data
    • Sinharay, S., Stern, H. S. & Russell, D. (2001). The use of multiple imputation for the analysis of missing data. Psychological Methods, 6, 317-329.
    • (2001) Psychological Methods , vol.6 , pp. 317-329
    • Sinharay, S.1    Stern, H.S.2    Russell, D.3
  • 54
    • 33644895035 scopus 로고    scopus 로고
    • Self-esteem, academic self-concept, and achievement: How the learning environment moderates the dynamics of self-concept
    • Trautwein, U., Lüdtke, O., Köller, 0. & Baumert, J. (2006). Self-esteem, academic self-concept, and achievement: How the learning environment moderates the dynamics of self-concept. Journal of Personality and Social Psychology, 90, 334-349.
    • (2006) Journal of Personality and Social Psychology , vol.90 , pp. 334-349
    • Trautwein, U.1    Lüdtke, O.2    Köller 03    Baumert, J.4
  • 55
    • 34249993450 scopus 로고    scopus 로고
    • Flexible imputation by MICE
    • 99.054, TNO Prevention and Health, Leiden. Retrieved from:, 20.04.2006
    • Van Buuren, S. & Oudshoom, K. (1999). Flexible imputation by MICE. Report TNO-PG 99.054, TNO Prevention and Health, Leiden. Retrieved from: http://www.multiple. imputation.com [20.04.2006].
    • (1999) Report TNO-PG
    • Van Buuren, S.1    Oudshoom, K.2
  • 57
    • 85015814688 scopus 로고    scopus 로고
    • Biases in SPSS 12.0 missing value analysis
    • von Hippel, P. T. (2004). Biases in SPSS 12.0 missing value analysis. American Statistician, 58, 160-164.
    • (2004) American Statistician , vol.58 , pp. 160-164
    • von Hippel, P.T.1
  • 58
    • 0035748545 scopus 로고    scopus 로고
    • New approaches to missing data in psychological research: Introduction to the special section
    • West, S. G. (2001). New approaches to missing data in psychological research: Introduction to the special section. Psychological Methods, 6, 315-316.
    • (2001) Psychological Methods , vol.6 , pp. 315-316
    • West, S.G.1
  • 59
    • 0001653457 scopus 로고    scopus 로고
    • Statistical methods in psychology journals: Guidelines and explanations
    • & Task Force on Statistical Inference
    • Wilkinson, L. & Task Force on Statistical Inference (1999). Statistical methods in psychology journals: Guidelines and explanations. American Psychologist, 54, 594-604.
    • (1999) American Psychologist , vol.54 , pp. 594-604
    • Wilkinson, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.