-
1
-
-
0038178319
-
Contingent planning under uncertainty via stochastic satisfiability
-
Majercik S.M., and Littman M.L. Contingent planning under uncertainty via stochastic satisfiability. Artificial Intelligence 147 (2003) 119-162
-
(2003)
Artificial Intelligence
, vol.147
, pp. 119-162
-
-
Majercik, S.M.1
Littman, M.L.2
-
4
-
-
84898678478
-
-
N. Onder, M.E. Pollack, Contingency selection in plan generation, in: Proceedings of the Fourth European Conference on Planning, 1997, pp. 364-376.
-
-
-
-
6
-
-
34249943434
-
-
D. Koller, R. Parr, Policy iteration for factored MDPs, in: Proceedings of the Sixteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI 2000), 2000, pp. 326-334.
-
-
-
-
7
-
-
84880898477
-
-
C. Guestrin, D. Koller, R. Parr, Max-norm projections for factored MDPs, in: Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, 2001, pp. 673-682.
-
-
-
-
8
-
-
0036923210
-
-
P. Poupart, C. Boutilier, D. Schuurmans, R. Patrascu, Piecewise linear value function approximation for factored MDPs, in: Proceedings of the Eighteenth National Conference on Artificial Intelligence (AAAI-2002), 2002, pp. 292-299.
-
-
-
-
9
-
-
34249947301
-
-
C. Boutilier, R. Dearden, Approximating value trees in structured dynamic programming, in: Proceedings of the Thirteenth International Conference on Machine Learning, 1996, pp. 56-62.
-
-
-
-
10
-
-
34249949462
-
-
R. St-Aubin, J. Hoey, C. Boutilier, APRICODD: Approximate policy construction using decision diagrams, in: Advances in Neural Information Processing Systems 13 (NIPS-2000), 2000, pp. 1089-1095.
-
-
-
-
11
-
-
34249931530
-
-
Z. Feng, E. Hansen, Approximate planning for factored POMDPs, in: Sixth European Conference on Planning (ECP-01), 2001.
-
-
-
-
12
-
-
34249937747
-
-
P. Poupart, C. Boutilier, VDCBPI: an approximate scalable algorithm for large scale POMDPs, in: Advances in Neural Information Processing Systems 17 (NIPS-2004), 2004, pp. 1081-1088.
-
-
-
-
13
-
-
85131706123
-
-
S. Sanner, C. Boutilier, Approximate linear programming for first-order MDPs, in: Proceedings of the Twenty-first Conference on Uncertainty in Artificial Intelligence (UAI-05), 2005, pp. 509-517.
-
-
-
-
14
-
-
0036832951
-
A sparse sampling algorithm for near-optimal planning in large Markov decision processes
-
Kearns M.J., Mansour Y., and Ng A.Y. A sparse sampling algorithm for near-optimal planning in large Markov decision processes. Machine Learning 49 (2002) 193-208
-
(2002)
Machine Learning
, vol.49
, pp. 193-208
-
-
Kearns, M.J.1
Mansour, Y.2
Ng, A.Y.3
-
16
-
-
34249944035
-
-
D.A. McAllester, S. Singh, Approximate planning for factored POMDPs using belief state simplification, in: Proceedings of the Fifteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-99), 1999, pp. 409-416.
-
-
-
-
17
-
-
85016628903
-
A model approximation scheme for planning in partially observable stochastic domains
-
Zhang N.L., and Lin W. A model approximation scheme for planning in partially observable stochastic domains. Journal of Artificial Intelligence Research 7 (1997) 199-230
-
(1997)
Journal of Artificial Intelligence Research
, vol.7
, pp. 199-230
-
-
Zhang, N.L.1
Lin, W.2
-
18
-
-
34249943923
-
-
G. Theocharous, L. Pack Kaelbling, Approximate planning in POMDPs with macro-actions, in: Advances in Neural Information Processing Systems 16 (NIPS-2003), 2003.
-
-
-
-
19
-
-
34249945411
-
-
A. Fern, S. Yoon, R. Givan, Approximate policy iteration with a policy language bias, in: Advances in Neural Information Processing Systems 16 (NIPS-2003), 2003.
-
-
-
-
20
-
-
34249936186
-
-
D. Blatt, S. Murphy, J. Zhu, A-learning for approximate planning, Technical Report 04-63, The Methodology Center, Pennsylvania State University, 2004.
-
-
-
-
22
-
-
0034852165
-
-
M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik, Chaff: Engineering an efficient SAT solver, in: 39th Design Automation Conference (DAC 2001), 2001.
-
-
-
|