-
1
-
-
0037440539
-
-
Dawidowicz, A. L.; Wianowska, D.; Patrykiejew, A. J. Colloid Interface Sci. 2003, 258, 213-218.
-
(2003)
J. Colloid Interface Sci
, vol.258
, pp. 213-218
-
-
Dawidowicz, A.L.1
Wianowska, D.2
Patrykiejew, A.3
-
2
-
-
0030566879
-
-
Dekany, I.; Farkas, A.; Kiraly, Z.; Klumpp, E.; Narres, H. D. Colloids Surf., A 1996, 119, 7-13.
-
(1996)
Colloids Surf., A
, vol.119
, pp. 7-13
-
-
Dekany, I.1
Farkas, A.2
Kiraly, Z.3
Klumpp, E.4
Narres, H.D.5
-
3
-
-
0001807069
-
-
Korn, M.; Killmann, E.; Eisenlauer, J. J. Colloid Interface Sci. 1980, 76, 7-18.
-
(1980)
J. Colloid Interface Sci
, vol.76
, pp. 7-18
-
-
Korn, M.1
Killmann, E.2
Eisenlauer, J.3
-
4
-
-
0025508834
-
-
Vincent, B.; Kiraly, Z.; Emmett, S.; Beaver, A. Colloids Surf. 1990, 49, 121-132.
-
(1990)
Colloids Surf
, vol.49
, pp. 121-132
-
-
Vincent, B.1
Kiraly, Z.2
Emmett, S.3
Beaver, A.4
-
5
-
-
0141940375
-
-
Dekany, I.; Haraszti, T.; Turi, L.; Kiraly, Z. Prog. Colloid Polym. Sci. 1998, 111, 65-73.
-
(1998)
Prog. Colloid Polym. Sci
, vol.111
, pp. 65-73
-
-
Dekany, I.1
Haraszti, T.2
Turi, L.3
Kiraly, Z.4
-
6
-
-
0037202219
-
-
Mizukami, M.; Moteki, M.; Kurihara, K. J. Am. Chem. Soc. 2002, 124, 12889-12897.
-
(2002)
J. Am. Chem. Soc
, vol.124
, pp. 12889-12897
-
-
Mizukami, M.1
Moteki, M.2
Kurihara, K.3
-
7
-
-
27144511200
-
-
Mizukami, M.; Nakagawa, Y.; Kurihara, K. Langmuir 2005, 21, 9402-9405.
-
(2005)
Langmuir
, vol.21
, pp. 9402-9405
-
-
Mizukami, M.1
Nakagawa, Y.2
Kurihara, K.3
-
10
-
-
0037419598
-
-
Kurihara, K.; Nakagawa, Y.; Mizukami, M. Chem. Lett. 2003, 32, 84-85.
-
(2003)
Chem. Lett
, vol.32
, pp. 84-85
-
-
Kurihara, K.1
Nakagawa, Y.2
Mizukami, M.3
-
13
-
-
33644769405
-
-
Mizukami, M.; Kurihara, K. e-J. Surf. Sci. Nanotechnol. 2006, 4, 244-248.
-
Mizukami, M.; Kurihara, K. e-J. Surf. Sci. Nanotechnol. 2006, 4, 244-248.
-
-
-
-
14
-
-
34249898141
-
-
Marshall, K.; Rochester, C. H. J. Chem. Soc., Faraday Trans. 1 1975, 71, 2478-2484.
-
(1975)
J. Chem. Soc., Faraday Trans. 1
, vol.71
, pp. 2478-2484
-
-
Marshall, K.1
Rochester, C.H.2
-
16
-
-
0010656042
-
-
Rochester, C. H.; Trebilco, D-A. J. Chem. Soc., Faraday Trans. 1 1978, 74, 1137-1145.
-
(1978)
J. Chem. Soc., Faraday Trans. 1
, vol.74
, pp. 1137-1145
-
-
Rochester, C.H.1
Trebilco, D.-A.2
-
17
-
-
0030862038
-
-
Gruenloh, C. J.; Carney, J. R.; Arrington, C. A.; Zwier, T. S.; Fredericks, S. Y.; Jordan, K. D. Science 1997, 276, 1678-1681.
-
(1997)
Science
, vol.276
, pp. 1678-1681
-
-
Gruenloh, C.J.1
Carney, J.R.2
Arrington, C.A.3
Zwier, T.S.4
Fredericks, S.Y.5
Jordan, K.D.6
-
18
-
-
34249888249
-
-
We may need to consider the effect of the approaching colloidal probe on enhancement of the macrocluster formation on the silica surface. We conclude that this effect should not be significant, and half the attraction range measured at low concentrations reasonably provides the adsorbed layer thickness on the basis of the following reasons: (1) There is significant cluster formation of phenol on the free surface as shown by ATR-FTIR data measured on silica surface (Figure 3, The adsorbed amount determined by ATR-FTIR showed a tendency similar to that of the adsorbed layer thickness obtained from the adsorption isotherm measurement (Figure 6, This indicates that the adsorption phenomenon is independent of the size and shape of the substrate, 2) Assuming half the attraction range as the adsorbed layer thickness, the force curve could be reproduced by eq 2. This shows that the adsorbed layer thickness does not change on approach, 3) As mentioned in the main text, the previous studies
-
We may need to consider the effect of the approaching colloidal probe on enhancement of the macrocluster formation on the silica surface. We conclude that this effect should not be significant, and half the attraction range measured at low concentrations reasonably provides the adsorbed layer thickness on the basis of the following reasons: (1) There is significant cluster formation of phenol on the free surface as shown by ATR-FTIR data measured on silica surface (Figure 3). The adsorbed amount determined by ATR-FTIR showed a tendency similar to that of the adsorbed layer thickness obtained from the adsorption isotherm measurement (Figure 6). This indicates that the adsorption phenomenon is independent of the size and shape of the substrate. (2) Assuming half the attraction range as the adsorbed layer thickness, the force curve could be reproduced by eq 2. This shows that the adsorbed layer thickness does not change on approach. (3) As mentioned in the main text, the previous studies of the simple alcohols such as ethanol have shown that the estimated adsorbed layer thickness agrees well with half the attraction range at low concentrations of alcohol. This also shows that the adsorbed layer thickness does not change on approach.
-
-
-
-
19
-
-
33644745750
-
-
Nakagawa, N.; Endo, S.; Mizukami, M.; Kurihara, K. Trans. Mater. Res. Soc. Jpn. 2005, 30, 667-670.
-
(2005)
Trans. Mater. Res. Soc. Jpn
, vol.30
, pp. 667-670
-
-
Nakagawa, N.1
Endo, S.2
Mizukami, M.3
Kurihara, K.4
-
20
-
-
0037759292
-
-
Allan, D. R.; Clark, S. J.; Dawson, A.; McGregor, P. A.; Parsons. S. Acta Crystallogr., Sect. B 2002, 58, 1018-1024.
-
(2002)
Acta Crystallogr., Sect. B
, vol.58
, pp. 1018-1024
-
-
Allan, D.R.1
Clark, S.J.2
Dawson, A.3
McGregor, P.A.4
Parsons, S.5
|