-
2
-
-
34249819127
-
-
P.M. Burrage, Runge-Kutta methods for stochastic differential equations, Ph.D. Thesis, The University of Queensland, Australia, 1999.
-
-
-
-
3
-
-
0030286423
-
High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations
-
Burrage K., and Burrage P.M. High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations. Appl. Numer. Math. 22 (1996) 81-101
-
(1996)
Appl. Numer. Math.
, vol.22
, pp. 81-101
-
-
Burrage, K.1
Burrage, P.M.2
-
4
-
-
0038408630
-
A variable stepsize implementation for stochastic differential equations
-
Burrage P.M., and Burrage K. A variable stepsize implementation for stochastic differential equations. SIAM J. Sci. Comput. 24 3 (2002) 848-864
-
(2002)
SIAM J. Sci. Comput.
, vol.24
, Issue.3
, pp. 848-864
-
-
Burrage, P.M.1
Burrage, K.2
-
6
-
-
78049443935
-
Error estimation in Runge-Kutta procedures
-
Call D.H., and Reeves R.F. Error estimation in Runge-Kutta procedures. Commun. ACM 1 9 (1958) 7-8
-
(1958)
Commun. ACM
, vol.1
, Issue.9
, pp. 7-8
-
-
Call, D.H.1
Reeves, R.F.2
-
7
-
-
0032051049
-
A formula for steplength control in numerical integration
-
Endresen L.P., and Myrheim J. A formula for steplength control in numerical integration. J. Comput. Appl. Math. 90 (1997) 263-264
-
(1997)
J. Comput. Appl. Math.
, vol.90
, pp. 263-264
-
-
Endresen, L.P.1
Myrheim, J.2
-
8
-
-
0031258411
-
Variable step size control in the numerical solution of stochastic differential equations
-
Gaines J.G., and Lyons T.J. Variable step size control in the numerical solution of stochastic differential equations. SIAM J. Applied Math. 57 5 (1997) 1455-1484
-
(1997)
SIAM J. Applied Math.
, vol.57
, Issue.5
, pp. 1455-1484
-
-
Gaines, J.G.1
Lyons, T.J.2
-
11
-
-
0242708960
-
An adaptive time-stepping algorithm for stochastic differential equations
-
Lamba H. An adaptive time-stepping algorithm for stochastic differential equations. J. Comput. Appl. Math. 161 (2003) 417-430
-
(2003)
J. Comput. Appl. Math.
, vol.161
, pp. 417-430
-
-
Lamba, H.1
-
12
-
-
0037081456
-
Adaptive schemes for the numerical solution of SDEs-a comparison
-
Lehn J., Rößler A., and Schein O. Adaptive schemes for the numerical solution of SDEs-a comparison. J. Comput. Appl. Math. 138 (2002) 297-308
-
(2002)
J. Comput. Appl. Math.
, vol.138
, pp. 297-308
-
-
Lehn, J.1
Rößler, A.2
Schein, O.3
-
13
-
-
0032202905
-
Step size control in the numerical solution of stochastic differential equations
-
Mauthner S. Step size control in the numerical solution of stochastic differential equations. J. Comput. Appl. Math. 100 (1998) 93-109
-
(1998)
J. Comput. Appl. Math.
, vol.100
, pp. 93-109
-
-
Mauthner, S.1
-
14
-
-
33947241405
-
Step-size control for mean-square numerical methods for stochastic differential equations with small noise
-
Römisch W., and Winkler R. Step-size control for mean-square numerical methods for stochastic differential equations with small noise. SIAM J. Sci. Comput. 28 2 (2006) 604-625
-
(2006)
SIAM J. Sci. Comput.
, vol.28
, Issue.2
, pp. 604-625
-
-
Römisch, W.1
Winkler, R.2
-
15
-
-
0001040012
-
Numerical treatment of stochastic differential equations
-
Rümelin W. Numerical treatment of stochastic differential equations. SIAM J. Numer. Anal. 19 (1982) 604-613
-
(1982)
SIAM J. Numer. Anal.
, vol.19
, pp. 604-613
-
-
Rümelin, W.1
|