메뉴 건너뛰기




Volumn 206, Issue 2, 2007, Pages 631-644

A new adaptive Runge-Kutta method for stochastic differential equations

Author keywords

Adaptive time stepping; Forward backward error estimation; Runge Kutta method; Stochastic differential equation

Indexed keywords

APPROXIMATION THEORY; DIFFERENTIAL EQUATIONS; PROBLEM SOLVING; RANDOM PROCESSES;

EID: 34249823058     PISSN: 03770427     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cam.2006.08.012     Document Type: Article
Times cited : (17)

References (15)
  • 1
  • 2
    • 34249819127 scopus 로고    scopus 로고
    • P.M. Burrage, Runge-Kutta methods for stochastic differential equations, Ph.D. Thesis, The University of Queensland, Australia, 1999.
  • 3
    • 0030286423 scopus 로고    scopus 로고
    • High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations
    • Burrage K., and Burrage P.M. High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations. Appl. Numer. Math. 22 (1996) 81-101
    • (1996) Appl. Numer. Math. , vol.22 , pp. 81-101
    • Burrage, K.1    Burrage, P.M.2
  • 4
    • 0038408630 scopus 로고    scopus 로고
    • A variable stepsize implementation for stochastic differential equations
    • Burrage P.M., and Burrage K. A variable stepsize implementation for stochastic differential equations. SIAM J. Sci. Comput. 24 3 (2002) 848-864
    • (2002) SIAM J. Sci. Comput. , vol.24 , Issue.3 , pp. 848-864
    • Burrage, P.M.1    Burrage, K.2
  • 6
    • 78049443935 scopus 로고
    • Error estimation in Runge-Kutta procedures
    • Call D.H., and Reeves R.F. Error estimation in Runge-Kutta procedures. Commun. ACM 1 9 (1958) 7-8
    • (1958) Commun. ACM , vol.1 , Issue.9 , pp. 7-8
    • Call, D.H.1    Reeves, R.F.2
  • 7
    • 0032051049 scopus 로고    scopus 로고
    • A formula for steplength control in numerical integration
    • Endresen L.P., and Myrheim J. A formula for steplength control in numerical integration. J. Comput. Appl. Math. 90 (1997) 263-264
    • (1997) J. Comput. Appl. Math. , vol.90 , pp. 263-264
    • Endresen, L.P.1    Myrheim, J.2
  • 8
    • 0031258411 scopus 로고    scopus 로고
    • Variable step size control in the numerical solution of stochastic differential equations
    • Gaines J.G., and Lyons T.J. Variable step size control in the numerical solution of stochastic differential equations. SIAM J. Applied Math. 57 5 (1997) 1455-1484
    • (1997) SIAM J. Applied Math. , vol.57 , Issue.5 , pp. 1455-1484
    • Gaines, J.G.1    Lyons, T.J.2
  • 11
    • 0242708960 scopus 로고    scopus 로고
    • An adaptive time-stepping algorithm for stochastic differential equations
    • Lamba H. An adaptive time-stepping algorithm for stochastic differential equations. J. Comput. Appl. Math. 161 (2003) 417-430
    • (2003) J. Comput. Appl. Math. , vol.161 , pp. 417-430
    • Lamba, H.1
  • 12
    • 0037081456 scopus 로고    scopus 로고
    • Adaptive schemes for the numerical solution of SDEs-a comparison
    • Lehn J., Rößler A., and Schein O. Adaptive schemes for the numerical solution of SDEs-a comparison. J. Comput. Appl. Math. 138 (2002) 297-308
    • (2002) J. Comput. Appl. Math. , vol.138 , pp. 297-308
    • Lehn, J.1    Rößler, A.2    Schein, O.3
  • 13
    • 0032202905 scopus 로고    scopus 로고
    • Step size control in the numerical solution of stochastic differential equations
    • Mauthner S. Step size control in the numerical solution of stochastic differential equations. J. Comput. Appl. Math. 100 (1998) 93-109
    • (1998) J. Comput. Appl. Math. , vol.100 , pp. 93-109
    • Mauthner, S.1
  • 14
    • 33947241405 scopus 로고    scopus 로고
    • Step-size control for mean-square numerical methods for stochastic differential equations with small noise
    • Römisch W., and Winkler R. Step-size control for mean-square numerical methods for stochastic differential equations with small noise. SIAM J. Sci. Comput. 28 2 (2006) 604-625
    • (2006) SIAM J. Sci. Comput. , vol.28 , Issue.2 , pp. 604-625
    • Römisch, W.1    Winkler, R.2
  • 15
    • 0001040012 scopus 로고
    • Numerical treatment of stochastic differential equations
    • Rümelin W. Numerical treatment of stochastic differential equations. SIAM J. Numer. Anal. 19 (1982) 604-613
    • (1982) SIAM J. Numer. Anal. , vol.19 , pp. 604-613
    • Rümelin, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.