메뉴 건너뛰기




Volumn 24, Issue 3, 2003, Pages 848-864

A variable stepsize implementation for stochastic differential equations

Author keywords

Embedding; Runge Kutta; SDEs; Variable stepsize

Indexed keywords

APPROXIMATION THEORY; BROWNIAN MOVEMENT; COMPUTER SIMULATION; CONVERGENCE OF NUMERICAL METHODS; INITIAL VALUE PROBLEMS; INTEGRAL EQUATIONS; INTEGRATION; MATHEMATICAL PROGRAMMING; MATRIX ALGEBRA; NUMERICAL METHODS; PARAMETER ESTIMATION; RUNGE KUTTA METHODS;

EID: 0038408630     PISSN: 10648275     EISSN: None     Source Type: Journal    
DOI: 10.1137/S1064827500376922     Document Type: Article
Times cited : (68)

References (13)
  • 1
    • 0030286423 scopus 로고    scopus 로고
    • High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations
    • K. Burrage and P. M. Burrage (1996), High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations, Appl. Numer. Math., 22, pp. 81-101.
    • (1996) Appl. Numer. Math. , vol.22 , pp. 81-101
    • Burrage, K.1    Burrage, P.M.2
  • 2
    • 0032182723 scopus 로고    scopus 로고
    • General order conditions for stochastic Runge-Kutta methods for both commuting and non-commuting stochastic ordinary differential equation systems
    • K. Burrage and P. M. Burrage (1998), General order conditions for stochastic Runge-Kutta methods for both commuting and non-commuting stochastic ordinary differential equation systems, Appl. Numer. Math., 28, pp. 161-177.
    • (1998) Appl. Numer. Math. , vol.28 , pp. 161-177
    • Burrage, K.1    Burrage, P.M.2
  • 3
    • 0039027595 scopus 로고    scopus 로고
    • High strong order methods for non-commutative stochastic ordinary differential equation systems and the Magnus formula
    • in Predictability: Quantifying Uncertainty in Models of Complex Phenomena, S. Chen, L. Margolin, and D. Sharp, eds.
    • K. Burrage and P. M. Burrage (1999), High strong order methods for non-commutative stochastic ordinary differential equation systems and the Magnus formula, in Predictability: Quantifying Uncertainty in Models of Complex Phenomena, S. Chen, L. Margolin, and D. Sharp, eds., Phys. D, 133, pp. 34-48.
    • (1999) Phys. D , vol.133 , pp. 34-48
    • Burrage, K.1    Burrage, P.M.2
  • 4
    • 0034547253 scopus 로고    scopus 로고
    • Order conditions of stochastic Runge-Kutta methods by B-series
    • K. Burrage and P. M. Burrage (2000), Order conditions of stochastic Runge-Kutta methods by B-series, SIAM J. Numer. Anal., 38, pp. 1626-1646.
    • (2000) SIAM J. Numer. Anal. , vol.38 , pp. 1626-1646
    • Burrage, K.1    Burrage, P.M.2
  • 8
    • 0031258411 scopus 로고    scopus 로고
    • Variable step size control in the numerical solution of stochastic differential equations
    • J. G. Gaines and T. J. Lyons (1997), Variable step size control in the numerical solution of stochastic differential equations, SIAM J. Appl. Math., 57, pp. 1455-1484.
    • (1997) SIAM J. Appl. Math. , vol.57 , pp. 1455-1484
    • Gaines, J.G.1    Lyons, T.J.2
  • 10
    • 84986734338 scopus 로고
    • Option pricing under incompleteness and stochastic volatility
    • N. Hofmann, E. Platen, and M. Schweizer (1992), Option pricing under incompleteness and stochastic volatility, Math. Finance, 2, pp. 153-187.
    • (1992) Math. Finance , vol.2 , pp. 153-187
    • Hofmann, N.1    Platen, E.2    Schweizer, M.3
  • 12
    • 0003752158 scopus 로고
    • Processus stochastiques et mouvement Brownien
    • Monographies des Probabilités, Gauthier-Villars, Paris
    • P. Lévy (1948), Processus stochastiques et mouvement Brownien, Monographies des Probabilités, Gauthier-Villars, Paris.
    • (1948)
    • Lévy, P.1
  • 13
    • 0008258746 scopus 로고    scopus 로고
    • Schrittweitensteuerung bei der numerischen Lösung stochastischer Differentialgleichungen
    • Thesis, Fortschr.-Ber. VDI Reihe 10 Nr 578, Düsseldorf, Germany
    • S. Mauthner (1999), Schrittweitensteuerung bei der numerischen Lösung stochastischer Differentialgleichungen, Thesis, Fortschr.-Ber. VDI Reihe 10 Nr 578, Düsseldorf, Germany.
    • (1999)
    • Mauthner, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.