-
1
-
-
0012349493
-
Crises, sudden changes in chaotic attractors, and transient chaos
-
Grebogi C., Ott E., and Yorke J.A. Crises, sudden changes in chaotic attractors, and transient chaos. Physica D 7 (1983) 181-200
-
(1983)
Physica D
, vol.7
, pp. 181-200
-
-
Grebogi, C.1
Ott, E.2
Yorke, J.A.3
-
2
-
-
0023242779
-
Evidence for homoclinic orbits as a precursor to chaos in a magnetic pendulum
-
Moon F.C., Cusumano J., and Holmes P. Evidence for homoclinic orbits as a precursor to chaos in a magnetic pendulum. Physica D 24 (1987) 383-390
-
(1987)
Physica D
, vol.24
, pp. 383-390
-
-
Moon, F.C.1
Cusumano, J.2
Holmes, P.3
-
3
-
-
21844518300
-
From single well chaos to cross well chaos: a detailed explanation in terms of manifold intersections
-
Katz A.L., and Dowell E.H. From single well chaos to cross well chaos: a detailed explanation in terms of manifold intersections. Int. J. Bifur. Chaos 4 (1994) 933-941
-
(1994)
Int. J. Bifur. Chaos
, vol.4
, pp. 933-941
-
-
Katz, A.L.1
Dowell, E.H.2
-
4
-
-
0012926015
-
Homoclinic orbits, spatial chaos and localized buckling
-
Moon F.C. (Ed), Kluwer, Dordrecht
-
Thompson J.M.T., and van der Heijden G.H.M. Homoclinic orbits, spatial chaos and localized buckling. In: Moon F.C. (Ed). IUTAM Symposium on New Applications of Nonlinear and Chaotic Dynamics in Mechanics, Cornell, 1997 (1999), Kluwer, Dordrecht 127-138
-
(1999)
IUTAM Symposium on New Applications of Nonlinear and Chaotic Dynamics in Mechanics, Cornell, 1997
, pp. 127-138
-
-
Thompson, J.M.T.1
van der Heijden, G.H.M.2
-
6
-
-
0001876086
-
An efficient method for computing invariant manifolds of planar maps
-
Hobson D. An efficient method for computing invariant manifolds of planar maps. J. Comput. Physics 104 (1993) 14-22
-
(1993)
J. Comput. Physics
, vol.104
, pp. 14-22
-
-
Hobson, D.1
-
7
-
-
0003757632
-
-
World Scientific, Singapore, London, Hong Kong
-
Blekhman I. Vibrational Mechanics (2000), World Scientific, Singapore, London, Hong Kong
-
(2000)
Vibrational Mechanics
-
-
Blekhman, I.1
-
8
-
-
0035284153
-
Methods for dimension reduction and their application in nonlinear dynamics
-
Steindl A., and Troger H. Methods for dimension reduction and their application in nonlinear dynamics. Int. J. Solids Struct. 38 (2001) 2131-2147
-
(2001)
Int. J. Solids Struct.
, vol.38
, pp. 2131-2147
-
-
Steindl, A.1
Troger, H.2
-
9
-
-
34249780595
-
-
G. Rega, H. Troger (Eds.), Dimension Reduction of Dynamical Systems: Methods, Models, Applications (Special Issue) Nonlinear Dyn. 41 (2005).
-
-
-
-
10
-
-
34249797658
-
-
R.H. Rand, Lecture Notes on Nonlinear Vibrations, Cornell University, available on line at 〈www.tam.cornell.edu/randdocs/〉, 2003.
-
-
-
-
12
-
-
0001213074
-
The normal modes of nonlinear n-degrees-of-freedom systems
-
Rosenberg R.M. The normal modes of nonlinear n-degrees-of-freedom systems. ASME J. Appl. Mech. 30 (1962) 7-14
-
(1962)
ASME J. Appl. Mech.
, vol.30
, pp. 7-14
-
-
Rosenberg, R.M.1
-
13
-
-
0000809158
-
A direct method for non-linear normal modes
-
Rand R.H. A direct method for non-linear normal modes. Int. J. Non-Linear Mech. 9 (1974) 363-368
-
(1974)
Int. J. Non-Linear Mech.
, vol.9
, pp. 363-368
-
-
Rand, R.H.1
-
14
-
-
34249817347
-
-
A.F. Vakakis, Analysis and identification of linear and nonlinear normal modes in vibrating systems, Ph.D. Dissertation, California Institute of Technology, Pasadena, CA, 1990.
-
-
-
-
15
-
-
0026420003
-
Non-linear normal modes and invariant manifolds
-
Shaw S.W., and Pierre C. Non-linear normal modes and invariant manifolds. J. Sound Vibration 150 (1991) 170-173
-
(1991)
J. Sound Vibration
, vol.150
, pp. 170-173
-
-
Shaw, S.W.1
Pierre, C.2
-
16
-
-
0027911991
-
Normal modes for nonlinear vibratory systems
-
Shaw S.W., and Pierre C. Normal modes for nonlinear vibratory systems. J. Sound Vibration 164 (1993) 85-124
-
(1993)
J. Sound Vibration
, vol.164
, pp. 85-124
-
-
Shaw, S.W.1
Pierre, C.2
-
17
-
-
0037075375
-
Normal modes of a non-linear campled-clamped beam
-
Xie W.C., Lee H.P., and Lim S.P. Normal modes of a non-linear campled-clamped beam. J. Sound Vibration 250 (2002) 339-349
-
(2002)
J. Sound Vibration
, vol.250
, pp. 339-349
-
-
Xie, W.C.1
Lee, H.P.2
Lim, S.P.3
-
18
-
-
0000404054
-
Free vibrations of a thin elastica by normal modes
-
Pak C., Rand R.H., and Moon F.C. Free vibrations of a thin elastica by normal modes. Nonlinear Dyn. 3 (1992) 347-364
-
(1992)
Nonlinear Dyn.
, vol.3
, pp. 347-364
-
-
Pak, C.1
Rand, R.H.2
Moon, F.C.3
-
19
-
-
0029402739
-
On direct methods for constructing nonlinear normal modes of continuous systems
-
Nayfeh A.H. On direct methods for constructing nonlinear normal modes of continuous systems. J. Vibration Control 1 (1995) 389-430
-
(1995)
J. Vibration Control
, vol.1
, pp. 389-430
-
-
Nayfeh, A.H.1
-
20
-
-
0037411955
-
Resonant nonlinear normal modes. Part I: Analytical treatment for one-dimensional structural systems
-
Lacarbonara W., Rega G., and Nayfeh A.H. Resonant nonlinear normal modes. Part I: Analytical treatment for one-dimensional structural systems. Int. J. Non-Linear Mech. 38 (2002) 851-872
-
(2002)
Int. J. Non-Linear Mech.
, vol.38
, pp. 851-872
-
-
Lacarbonara, W.1
Rega, G.2
Nayfeh, A.H.3
-
21
-
-
33847298659
-
-
N. Srinil, G. Rega, Two-to-one resonant multi-modal dynamics of horizontal/inclined cables. Part II: Internal resonance activation, reduced order models and nonlinear normal modes, Nonlinear Dyn. 48 (2007) 253-274.
-
-
-
-
22
-
-
10044260810
-
Non-linear normal modes of a simply supported beam: continuos system and finite-element models
-
Mazzilli C.E.N., Soares M.E.S., and Baracho Neto G.P. Non-linear normal modes of a simply supported beam: continuos system and finite-element models. Comput. Struct. 82 (2004) 2683-2691
-
(2004)
Comput. Struct.
, vol.82
, pp. 2683-2691
-
-
Mazzilli, C.E.N.1
Soares, M.E.S.2
Baracho Neto, G.P.3
-
23
-
-
0035810116
-
Accurate reduced-order models for a simple rotor blade model using nonlinear normal modes
-
Pesheck E., Pierre C., and Shaw S. Accurate reduced-order models for a simple rotor blade model using nonlinear normal modes. Math. Comput. Modelling 33 (2001) 1085-1097
-
(2001)
Math. Comput. Modelling
, vol.33
, pp. 1085-1097
-
-
Pesheck, E.1
Pierre, C.2
Shaw, S.3
-
24
-
-
0037304951
-
Nonlinear dynamic analysis of MEMS switches by nonlinear modal analysis
-
Xie W.C., Lee H.P., and Lim S.P. Nonlinear dynamic analysis of MEMS switches by nonlinear modal analysis. Nonlinear Dyn. 31 (2003) 243-256
-
(2003)
Nonlinear Dyn.
, vol.31
, pp. 243-256
-
-
Xie, W.C.1
Lee, H.P.2
Lim, S.P.3
-
25
-
-
0003350042
-
Dynamic Buckling
-
Flügge W. (Ed), McGraw-Hill, New York (Chapter 62)
-
Mettler E. Dynamic Buckling. In: Flügge W. (Ed). Handbook of Engineering Mechanics (1962), McGraw-Hill, New York (Chapter 62)
-
(1962)
Handbook of Engineering Mechanics
-
-
Mettler, E.1
-
28
-
-
0003455471
-
-
Wiley, New York
-
Vakakis A.F., Manevitch L.I., Mikhlin Y.V., Pilipchuck V.N., and Zevin A.A. Normal Modes and Localization in Nonlinear Systems (1996), Wiley, New York
-
(1996)
Normal Modes and Localization in Nonlinear Systems
-
-
Vakakis, A.F.1
Manevitch, L.I.2
Mikhlin, Y.V.3
Pilipchuck, V.N.4
Zevin, A.A.5
-
30
-
-
34249830210
-
-
S. Lenci, G. Rega, Optimal control of the homoclinic bifurcation in buckled beams: infinite-dimensional vs reduced order modeling, in: Recent Advances in Nonlinear Mechanics (RANM2005), 30 August-1 September 2005, Aberdeen, Scotland, UK.
-
-
-
-
31
-
-
0019666924
-
A partial differential equation with infinitely many periodic orbits: chaotic oscillations of a forced beam
-
Holmes P., and Marsden J. A partial differential equation with infinitely many periodic orbits: chaotic oscillations of a forced beam. Arch. Rat. Mech. Anal. 76 (1981) 135-165
-
(1981)
Arch. Rat. Mech. Anal.
, vol.76
, pp. 135-165
-
-
Holmes, P.1
Marsden, J.2
|