메뉴 건너뛰기




Volumn 70, Issue 8, 2007, Pages 962-984

Comparison of linear and classical velocity update rules in particle swarm optimization: Notes on diversity

Author keywords

Classical; Directional diversity; Instantaneous search domain; Limit behaviour; Line search; Linear; Magnitude diversity; Particle swarm optimization; Trajectory collapse

Indexed keywords

CONVERGENCE OF NUMERICAL METHODS; OPTIMIZATION; RANDOM PROCESSES;

EID: 34249309600     PISSN: 00295981     EISSN: 10970207     Source Type: Journal    
DOI: 10.1002/nme.1867     Document Type: Article
Times cited : (60)

References (35)
  • 5
    • 0142000477 scopus 로고    scopus 로고
    • Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces
    • Storn R, Price K. Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 1997; 11:341-359.
    • (1997) Journal of Global Optimization , vol.11 , pp. 341-359
    • Storn, R.1    Price, K.2
  • 12
    • 84942085623 scopus 로고    scopus 로고
    • Visualizing particle swarm optimization - Gaussian particle swarm optimization
    • Secrest BR, Lamont GB. Visualizing particle swarm optimization - Gaussian particle swarm optimization. IEEE Swarm Intelligence Symposium 2003; 198-204.
    • (2003) IEEE Swarm Intelligence Symposium , pp. 198-204
    • Secrest, B.R.1    Lamont, G.B.2
  • 14
    • 0036464756 scopus 로고    scopus 로고
    • The particle swarm - explosion, stability, and convergence in a multidimensional complex space
    • Clerc M, Kennedy J. The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 2002; 6:58-73.
    • (2002) IEEE Transactions on Evolutionary Computation , vol.6 , pp. 58-73
    • Clerc, M.1    Kennedy, J.2
  • 15
    • 0037475094 scopus 로고    scopus 로고
    • The particle swarm optimization algorithm: Convergence analysis and parameter selection
    • Trelea IC. The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Letters 2003; 85:317-325.
    • (2003) Information Processing Letters , vol.85 , pp. 317-325
    • Trelea, I.C.1
  • 17
    • 34249309600 scopus 로고    scopus 로고
    • Comparison of linear and classical velocity update rules in particle swarm optimization: Notes on scale and frame invariance
    • in this issue
    • Wilke DN, Kok S, Groenwold AA. Comparison of linear and classical velocity update rules in particle swarm optimization: notes on scale and frame invariance. International Journal for Numerical Methods in Engineering, in this issue.
    • International Journal for Numerical Methods in Engineering
    • Wilke, D.N.1    Kok, S.2    Groenwold, A.A.3
  • 19
    • 84879015433 scopus 로고    scopus 로고
    • Parameter selection in particle swarm optimization
    • Shi Y, Eberhart RC. Parameter selection in particle swarm optimization. Evolutionary Programming VII 1998; 591-600.
    • (1998) Evolutionary Programming VII , pp. 591-600
    • Shi, Y.1    Eberhart, R.C.2
  • 20
    • 0033666935 scopus 로고    scopus 로고
    • Comparing inertia weights and constriction factors in particle swarm optimization
    • Eberhart RC, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization. IEEE Congress on Evolutionary Computation 2000; 1:84-88.
    • (2000) IEEE Congress on Evolutionary Computation , vol.1 , pp. 84-88
    • Eberhart, R.C.1    Shi, Y.2
  • 23
    • 3142697802 scopus 로고    scopus 로고
    • van den Bergh F, Engelbrecht AP. A Cooperative approach to particle swarm optimization. IEEE Transactions on Evolutionary Computation 2004; 8:225-239.
    • van den Bergh F, Engelbrecht AP. A Cooperative approach to particle swarm optimization. IEEE Transactions on Evolutionary Computation 2004; 8:225-239.
  • 24
    • 84901421400 scopus 로고    scopus 로고
    • The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization
    • Clerc M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. IEEE Congress on Evolutionary Computation 1999; 3:1951-1957.
    • (1999) IEEE Congress on Evolutionary Computation , vol.3 , pp. 1951-1957
    • Clerc, M.1
  • 28
    • 22044450246 scopus 로고    scopus 로고
    • A particle swarm optimization-based method for multiobjective design optimizations
    • Ho SL, Yang S, Ni G, Lo EWC, Wong HC. A particle swarm optimization-based method for multiobjective design optimizations. IEEE Transactions on Magnetics 2005; 41(5):1756-1759.
    • (2005) IEEE Transactions on Magnetics , vol.41 , Issue.5 , pp. 1756-1759
    • Ho, S.L.1    Yang, S.2    Ni, G.3    Lo, E.W.C.4    Wong, H.C.5
  • 30
    • 0033675961 scopus 로고    scopus 로고
    • Stereotyping: Improving particle swarm performance with cluster analysis
    • Kennedy J. Stereotyping: improving particle swarm performance with cluster analysis. IEEE Congress on Evolutionary Computation 2000; 2:1507-1512.
    • (2000) IEEE Congress on Evolutionary Computation , vol.2 , pp. 1507-1512
    • Kennedy, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.