메뉴 건너뛰기




Volumn 24, Issue 1, 1996, Pages 370-379

Nonparametric inference for ergodic, stationary time series

Author keywords

Nonparametric regression; Stationary ergodic process; Universal prediction schemes

Indexed keywords


EID: 0030551977     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/aos/1033066215     Document Type: Article
Times cited : (65)

References (21)
  • 1
    • 0000551326 scopus 로고
    • Universal schemes for prediction, gambling and portfolio selection
    • ALGOET, P. (1992). Universal schemes for prediction, gambling and portfolio selection. Ann. Probab. 20 901-941.
    • (1992) Ann. Probab. , vol.20 , pp. 901-941
    • Algoet, P.1
  • 3
    • 84972574511 scopus 로고
    • Weighted sums of certain dependent random variables
    • AZUMA, K. (1967). Weighted sums of certain dependent random variables. Tōhoku Math. J. 37 357-367.
    • (1967) Tōhoku Math. J. , vol.37 , pp. 357-367
    • Azuma, K.1
  • 6
    • 38249043318 scopus 로고
    • On smoothed probability density estimation for stationary processes
    • CASTELLANA, J. V. and LEADBETTER, M. R. (1986). On smoothed probability density estimation for stationary processes. Stochastic Process. Appl. 21 179-193.
    • (1986) Stochastic Process. Appl. , vol.21 , pp. 179-193
    • Castellana, J.V.1    Leadbetter, M.R.2
  • 7
    • 0003184970 scopus 로고
    • Nonparametric time series analysis and prediction: Uniform almost sure convergence
    • COLLOMB, G. (1985). Nonparametric time series analysis and prediction: uniform almost sure convergence. Statistics 2 197-307.
    • (1985) Statistics , vol.2 , pp. 197-307
    • Collomb, G.1
  • 8
    • 0040112573 scopus 로고
    • Open problems in information theory
    • IEEE Press, New York
    • COVER, T. (1975). Open problems in information theory. In Moscow Information Theory Workshop. IEEE Press, New York.
    • (1975) Moscow Information Theory Workshop
    • Cover, T.1
  • 11
    • 0001839725 scopus 로고
    • Strong consistent density estimation from ergodic sample
    • GYÖRFI, L. (1981). Strong consistent density estimation from ergodic sample. J. Multivariate Anal. 11 81-84.
    • (1981) J. Multivariate Anal. , vol.11 , pp. 81-84
    • Györfi, L.1
  • 13
    • 38249010056 scopus 로고
    • Kernel density estimation from ergodic sample is not universally consistent
    • GYÖRFI, L. and LUGOSI, G. (1992). Kernel density estimation from ergodic sample is not universally consistent. Comput. Statist. Data Anal. 14 437-442.
    • (1992) Comput. Statist. Data Anal. , vol.14 , pp. 437-442
    • Györfi, L.1    Lugosi, G.2
  • 14
    • 0025434760 scopus 로고
    • 2 strong consistency of recursive kernel density estimation from time series
    • 2 strong consistency of recursive kernel density estimation from time series. IEEE Trans. Inform. Theory 36 531-539.
    • (1990) IEEE Trans. Inform. Theory , vol.36 , pp. 531-539
    • Györfi, L.1    Masry, E.2
  • 15
    • 0022686013 scopus 로고
    • Recursive probability density estimation for weakly dependent stationary processes
    • MASRY, E. (1986). Recursive probability density estimation for weakly dependent stationary processes. IEEE Trans. Inform. Theory IT-32 249-254.
    • (1986) IEEE Trans. Inform. Theory , vol.IT-32 , pp. 249-254
    • Masry, E.1
  • 16
    • 51249183423 scopus 로고
    • Guessing the next output of a stationary process
    • ORNSTEIN, D. (1978). Guessing the next output of a stationary process. Israel J. Math. 30 292-296.
    • (1978) Israel J. Math. , vol.30 , pp. 292-296
    • Ornstein, D.1
  • 17
    • 0000661887 scopus 로고
    • Density estimates and Markov sequences
    • (M. Puri, ed.) Cambridge Univ. Press
    • ROSENBLATT, M. (1970). Density estimates and Markov sequences. In Nonparametric Techniques in Statistical Inference (M. Puri, ed.) 199-210. Cambridge Univ. Press.
    • (1970) Nonparametric Techniques in Statistical Inference , pp. 199-210
    • Rosenblatt, M.1
  • 18
    • 84950440675 scopus 로고
    • Non-parametric estimation of the transition distribution of a Markov process
    • ROUSSAS, G. (1969). Non-parametric estimation of the transition distribution of a Markov process. Ann. Inst. Statist. Math. 21 73-87.
    • (1969) Ann. Inst. Statist. Math. , vol.21 , pp. 73-87
    • Roussas, G.1
  • 20
    • 38249021954 scopus 로고
    • Nonparametric density and regression estimation for Markov sequences without mixing assumptions
    • YAKOWITZ, S. (1989). Nonparametric density and regression estimation for Markov sequences without mixing assumptions. J. Multivariate Anal. 30 124-136.
    • (1989) J. Multivariate Anal. , vol.30 , pp. 124-136
    • Yakowitz, S.1
  • 21
    • 0001207364 scopus 로고
    • Nearest neighbor regression estimation for null-recurrent Markov time series
    • YAKOWITZ, S. (1993). Nearest neighbor regression estimation for null-recurrent Markov time series. Stochastic Process. Appl. 37 311-318.
    • (1993) Stochastic Process. Appl. , vol.37 , pp. 311-318
    • Yakowitz, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.