메뉴 건너뛰기




Volumn 53, Issue 9, 2007, Pages 1390-1410

Reduction method for concept lattices based on rough set theory and its application

Author keywords

Attribute reduction; Concept lattice; Formal context; Object reduction; Rough set; Scheduling

Indexed keywords

COMPUTATION THEORY; FUNCTION EVALUATION; INFORMATION SYSTEMS; ROUGH SET THEORY; SCHEDULING;

EID: 34248562070     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.camwa.2006.03.040     Document Type: Article
Times cited : (137)

References (31)
  • 1
    • 0000398336 scopus 로고
    • Restructuring lattice theory: An approach based on hierarchies of concepts
    • Rival I. (Ed), Reidel, Dordrecht, Boston
    • Wille R. Restructuring lattice theory: An approach based on hierarchies of concepts. In: Rival I. (Ed). Ordered Sets (1982), Reidel, Dordrecht, Boston 445-470
    • (1982) Ordered Sets , pp. 445-470
    • Wille, R.1
  • 3
    • 0030215881 scopus 로고    scopus 로고
    • A lattice conceptual clustering system and its application to browsing retrieval
    • Carpineto C., and Romano G. A lattice conceptual clustering system and its application to browsing retrieval. Machine Learning 10 (1996) 95-122
    • (1996) Machine Learning , vol.10 , pp. 95-122
    • Carpineto, C.1    Romano, G.2
  • 4
    • 34248509516 scopus 로고    scopus 로고
    • M. Faid, R. Missaoi, R. Godin, Mining complex structures using context concatenation in formal concept analysis, in: International KRUSE Symposium, Vancouver, BC, 11-13 August, 1997
  • 5
    • 0028516132 scopus 로고
    • An incremental concept formation approach for learning from databases
    • Formal methods in databases and software engineering (special issue)
    • Godin R., and Missaoi R. An incremental concept formation approach for learning from databases. Formal methods in databases and software engineering. Theoretical Computer Science 133 (1994) 387-419 (special issue)
    • (1994) Theoretical Computer Science , vol.133 , pp. 387-419
    • Godin, R.1    Missaoi, R.2
  • 7
    • 0003258348 scopus 로고
    • Knowledge acquisition by methods of formal concept analysis
    • Diday E. (Ed), Nova Science, New York
    • Wille R. Knowledge acquisition by methods of formal concept analysis. In: Diday E. (Ed). Data Analysis, Learning Symbolic and Numeric Knowledge (1989), Nova Science, New York 365-380
    • (1989) Data Analysis, Learning Symbolic and Numeric Knowledge , pp. 365-380
    • Wille, R.1
  • 9
    • 84958623140 scopus 로고    scopus 로고
    • A logical generalization of formal concept analysis
    • The Eighth International Conference on Conceptual Structures. ICCS2000, Darmstadt, Germany
    • Ferre S., and Ridoux O. A logical generalization of formal concept analysis. The Eighth International Conference on Conceptual Structures. ICCS2000, Darmstadt, Germany. Lecture Notes in Artificial Intelligence vol. 1867 (2000) 371-384
    • (2000) Lecture Notes in Artificial Intelligence , vol.1867 , pp. 371-384
    • Ferre, S.1    Ridoux, O.2
  • 10
    • 4544332277 scopus 로고    scopus 로고
    • Monotone concepts for formal concept analysis
    • Deogun J.S., and Saqer J. Monotone concepts for formal concept analysis. Discrete Applied Mathematics 144 (2004) 70-78
    • (2004) Discrete Applied Mathematics , vol.144 , pp. 70-78
    • Deogun, J.S.1    Saqer, J.2
  • 12
    • 0032188308 scopus 로고    scopus 로고
    • Rough sets theory and it's application to data analysis
    • Pawlak Z. Rough sets theory and it's application to data analysis. Cybernetics Systems, An International Journal 29 (1998) 661-688
    • (1998) Cybernetics Systems, An International Journal , vol.29 , pp. 661-688
    • Pawlak, Z.1
  • 13
    • 34248539772 scopus 로고    scopus 로고
    • A. Skowron, A synthesis of decision rules: Applications of discernibility matrix, in: Proceedings of the International Conference on Intelligent Information Systems, Augustow, Poland, 1993, pp. 30-46
  • 14
    • 84947730794 scopus 로고    scopus 로고
    • Rule discovery in database with missing values based on rough set model
    • Zhong N., and Zhou L.Z. (Eds), Springer, Beijing, China
    • Thusaku S. Rule discovery in database with missing values based on rough set model. In: Zhong N., and Zhou L.Z. (Eds). Methodologies for Knowledge Discover and Data Mining (1999), Springer, Beijing, China 274-278
    • (1999) Methodologies for Knowledge Discover and Data Mining , pp. 274-278
    • Thusaku, S.1
  • 15
    • 4544322033 scopus 로고    scopus 로고
    • Y.Y. Yao, Concept lattices in rough set theory, in: Proceedings of 23rd International Meeting of the North American Fuzzy Information Processing Society, 2004
  • 16
    • 34248560292 scopus 로고    scopus 로고
    • Y.Y. Yao, A comparative study of formal concept analysis and rough set theory in data analysis, rough sets and current trends in computing, in: Proceedings of 3rd International Conference, RSCT'04, 2004
  • 17
    • 78149291761 scopus 로고    scopus 로고
    • G. Gediga, I. Duntsch, Modal-style operators in qualitative data analysis, in: Proceedings of the 2002 IEEE International Conference on Data Mining, 2002, pp. 155-162
  • 18
    • 84942942814 scopus 로고    scopus 로고
    • Concept approximation in concept lattice, knowledge discovery and data mining
    • Proceedings of the 5th Pacific-Asia Conference. PAKDD 2001
    • Hu K., Sui Y., Lu Y., Wang J., and Shi C. Concept approximation in concept lattice, knowledge discovery and data mining. Proceedings of the 5th Pacific-Asia Conference. PAKDD 2001. Lecture Notes in Computer Science vol. 2035 (2001) 167-173
    • (2001) Lecture Notes in Computer Science , vol.2035 , pp. 167-173
    • Hu, K.1    Sui, Y.2    Lu, Y.3    Wang, J.4    Shi, C.5
  • 19
    • 0030219309 scopus 로고    scopus 로고
    • Rough concept analysis: A synthesis of rough sets and formal concept analysis
    • Kent R.E. Rough concept analysis: A synthesis of rough sets and formal concept analysis. Fundamenta Informaticae 27 (1996) 169-181
    • (1996) Fundamenta Informaticae , vol.27 , pp. 169-181
    • Kent, R.E.1
  • 20
    • 84958053871 scopus 로고    scopus 로고
    • Formal rough concept analysis
    • New directions in Rough Sets, Data Mining, and Granular-Soft, Springer, Berlin
    • Saquer J., and Deogun J.S. Formal rough concept analysis. New directions in Rough Sets, Data Mining, and Granular-Soft. Lecture Notes in Computer Science vol. 1711 (1999), Springer, Berlin 91-99
    • (1999) Lecture Notes in Computer Science , vol.1711 , pp. 91-99
    • Saquer, J.1    Deogun, J.S.2
  • 21
    • 4544267722 scopus 로고    scopus 로고
    • Y.Y. Yao, Y.H. Chen, Rough set approximations in formal concept analysis, in: Proceedings of 23rd International Meeting of the North American Fuzzy Information Processing Society, 2004
  • 23
    • 0027274562 scopus 로고
    • From concept lattices to approximation spaces: Algebraic structures of some spaces of partial objects
    • Pagliani P. From concept lattices to approximation spaces: Algebraic structures of some spaces of partial objects. Fundamenta Informaticae 18 (1993) 1-18
    • (1993) Fundamenta Informaticae , vol.18 , pp. 1-18
    • Pagliani, P.1
  • 24
    • 84957798120 scopus 로고    scopus 로고
    • A conceptual view of knowledge bases in rough set theory
    • Rough Sets and Current Trends in Computing (Second International Conference RSCTC 2000), Springer, Berlin
    • Wolff K.E. A conceptual view of knowledge bases in rough set theory. Rough Sets and Current Trends in Computing (Second International Conference RSCTC 2000). Lecture Notes in Computer Science vol. 2005 (2001), Springer, Berlin 220-228
    • (2001) Lecture Notes in Computer Science , vol.2005 , pp. 220-228
    • Wolff, K.E.1
  • 25
    • 4544275274 scopus 로고    scopus 로고
    • Approximation operators in qualitative data analysis
    • Swart H., Orlowska E., Schmidt G., and Roubens M. (Eds), Springer, Heidelberg
    • Duntsch I., and Gediga G. Approximation operators in qualitative data analysis. In: Swart H., Orlowska E., Schmidt G., and Roubens M. (Eds). Theory and Application of Relational Structures as Knowledge Instruments (2003), Springer, Heidelberg 216-233
    • (2003) Theory and Application of Relational Structures as Knowledge Instruments , pp. 216-233
    • Duntsch, I.1    Gediga, G.2
  • 27
    • 21644446428 scopus 로고    scopus 로고
    • An iterative layered tabu search algorithm for complex job shop scheduling problem
    • Liu M., Dong M.Y., and Wu C. An iterative layered tabu search algorithm for complex job shop scheduling problem. Chinese Journal of Electronics 14 3 (2005) 519-523
    • (2005) Chinese Journal of Electronics , vol.14 , Issue.3 , pp. 519-523
    • Liu, M.1    Dong, M.Y.2    Wu, C.3
  • 29
    • 34248552336 scopus 로고    scopus 로고
    • M. Kryszkiewicz, Knowledge reduction in information systems, Ph.D. Thesis, University of Technology, Warsaw, 1994
  • 30
    • 0029307418 scopus 로고
    • Extracting laws from decision tables
    • Skowron A. Extracting laws from decision tables. Computational Intelligence 11 2 (1995) 371-388
    • (1995) Computational Intelligence , vol.11 , Issue.2 , pp. 371-388
    • Skowron, A.1
  • 31
    • 0037061463 scopus 로고    scopus 로고
    • A heuristic for job shop scheduling to minimize total weighted tardiness
    • Asano M., and Ohta H. A heuristic for job shop scheduling to minimize total weighted tardiness. Computers and Industrial Engineering 42 (2002) 137-147
    • (2002) Computers and Industrial Engineering , vol.42 , pp. 137-147
    • Asano, M.1    Ohta, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.