메뉴 건너뛰기




Volumn 22, Issue 2, 2007, Pages 287-296

Analyzing sequential patterns in retail databases

Author keywords

Data mining; Sequential pattern mining; Sequential ws confidence; Weighted support affinity

Indexed keywords

SEQUENTIAL PATTERN MINING; SEQUENTIAL WS CONFIDENCE; WEIGHTED SUPPORT AFFINITY; WSMINER;

EID: 34247281611     PISSN: 10009000     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11390-007-9036-4     Document Type: Article
Times cited : (8)

References (24)
  • 1
    • 2942618802 scopus 로고    scopus 로고
    • A top-down method for mining most specific frequent patterns in biological sequence data
    • Lake Buena Vista, Florida, USA, April 22-24
    • Ester M. A top-down method for mining most specific frequent patterns in biological sequence data. In Proc. the 4th SIAM Int. Conf. Data Mining, Lake Buena Vista, Florida, USA, April 22-24, 2004, pp.91-101.
    • (2004) Proc. the 4th SIAM Int. Conf. Data Mining , pp. 91-101
    • Ester, M.1
  • 4
    • 84880089393 scopus 로고    scopus 로고
    • SeqIndex: Indexing sequences by sequential pattern analysis
    • Newport Beach, USA, April 21-23
    • Chung H, Yan X, Han J. SeqIndex: Indexing sequences by sequential pattern analysis. In Proc. the 5th SIAM Int. Conf. Data Mining, Newport Beach, USA, April 21-23, 2005, pp.601-605.
    • (2005) Proc. the 5th SIAM Int. Conf. Data Mining , pp. 601-605
    • Chung, H.1    Yan, X.2    Han, J.3
  • 6
    • 18544363847 scopus 로고    scopus 로고
    • ApproxMAP: Approximate mining of consensus sequential patterns
    • San Francisco, USA, May 1-3
    • Kum H C, Pei J, Wang W, Duncan D. ApproxMAP: Approximate mining of consensus sequential patterns. In Proc. the 3rd SIAM Int. Conf. Data Mining, San Francisco, USA, May 1-3, 2003, pp.311-315.
    • (2003) Proc. the 3rd SIAM Int. Conf. Data Mining , pp. 311-315
    • Kum, H.C.1    Pei, J.2    Wang, W.3    Duncan, D.4
  • 8
    • 0001741607 scopus 로고    scopus 로고
    • SPIRIT: Sequential pattern mining with regular expression constraints
    • September 7-10, Edinburgh, UK, pp
    • Garofalakis M, Rastogi R, Shim K. SPIRIT: Sequential pattern mining with regular expression constraints. In Proc. 25th Int. Conf. Very Large Data Bases, September 7-10, 1999, Edinburgh, UK, pp.223-234.
    • (1999) Proc. 25th Int. Conf. Very Large Data Bases , pp. 223-234
    • Garofalakis, M.1    Rastogi, R.2    Shim, K.3
  • 9
    • 26944474957 scopus 로고    scopus 로고
    • Mining frequent sequential patterns under regular expressions: A highly adaptive strategy for pushing constraints
    • San Francisco, USA, May 1-3
    • Lorincz H A, Boulicaut J F. Mining frequent sequential patterns under regular expressions: A highly adaptive strategy for pushing constraints. In Proc. the 3rd SIAM Int. Conf. Data Mining, San Francisco, USA, May 1-3, 2003, pp.316-320.
    • (2003) Proc. the 3rd SIAM Int. Conf. Data Mining , pp. 316-320
    • Lorincz, H.A.1    Boulicaut, J.F.2
  • 11
    • 2442446148 scopus 로고    scopus 로고
    • Wang J, Han J. BIDE: Efficient mining of frequent closed sequences. In Proc. the 80th Int. Conf. Data Engineering, March 30-April 2, 2004, Boston, MA, USA, pp.79-90.
    • Wang J, Han J. BIDE: Efficient mining of frequent closed sequences. In Proc. the 80th Int. Conf. Data Engineering, March 30-April 2, 2004, Boston, MA, USA, pp.79-90.
  • 12
    • 4444326044 scopus 로고    scopus 로고
    • CloSpan: Mining closed sequential patterns in large datasets
    • San Francisco, CA, USA, May 1-3
    • Yan X, Han J, Afshar R. CloSpan: Mining closed sequential patterns in large datasets. In Proc. the 3rd SIAM Int. Conf. Data Mining, San Francisco, CA, USA, May 1-3, 2003, pp.166-177.
    • (2003) Proc. the 3rd SIAM Int. Conf. Data Mining , pp. 166-177
    • Yan, X.1    Han, J.2    Afshar, R.3
  • 14
    • 2442458706 scopus 로고    scopus 로고
    • An efficient algorithm for mining frequent sequences by a new strategy without support counting
    • Boston, MA, USA, 30 March-2 April
    • Chiu D Y, Wu Y H, Chen A L. An efficient algorithm for mining frequent sequences by a new strategy without support counting. In Proc. the 20th Int. Conf. Data, Engineering, ICDE 2004, Boston, MA, USA, 30 March-2 April, 2004, pp.375-386.
    • (2004) Proc. the 20th Int. Conf. Data, Engineering, ICDE 2004 , pp. 375-386
    • Chiu, D.Y.1    Wu, Y.H.2    Chen, A.L.3
  • 15
    • 13844256245 scopus 로고    scopus 로고
    • Mining sequential patterns by pattern-growth: The PrefixSpan approach
    • Oct
    • Pei J, Han J, Wang J et al. Mining sequential patterns by pattern-growth: The PrefixSpan approach. IEEE Trans. Knowledge and Data Engineering, Oct. 2004, 16(1): 1424-1440.
    • (2004) IEEE Trans. Knowledge and Data Engineering , vol.16 , Issue.1 , pp. 1424-1440
    • Pei, J.1    Han, J.2    Wang, J.3
  • 16
    • 0034826102 scopus 로고    scopus 로고
    • SPADE: An efficient algorithm for mining frequent sequences
    • January
    • Zaki M. SPADE: An efficient algorithm for mining frequent sequences. Machine Learning, January 2001, 42(1/2): 31-60.
    • (2001) Machine Learning , vol.42 , Issue.1-2 , pp. 31-60
    • Zaki, M.1
  • 20
    • 0035016443 scopus 로고    scopus 로고
    • PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern growth
    • Heidelberg, Germany, April 2-6
    • Pei J, Han J, Mortazavi-Asi B, Pino H. PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern growth. In Proc. the 17th Int. Conf. Data Engineering, Heidelberg, Germany, April 2-6, 2001, pp.215-224.
    • (2001) Proc. the 17th Int. Conf. Data Engineering , pp. 215-224
    • Pei, J.1    Han, J.2    Mortazavi-Asi, B.3    Pino, H.4
  • 23
    • 84880087434 scopus 로고    scopus 로고
    • Weighted frequent itemset mining with a weight range and a minimum weight
    • Newport Beach, USA, April 21-23
    • Yun U, Leggett J J. WFIM: Weighted frequent itemset mining with a weight range and a minimum weight. In Proc. the 5th SIAM Int. Conf. Data Mining, Newport Beach, USA, April 21-23, 2005, pp.636-640.
    • (2005) Proc. the 5th SIAM Int. Conf. Data Mining , pp. 636-640
    • Yun, U.1    Leggett, J.J.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.