메뉴 건너뛰기




Volumn 15, Issue 8, 2007, Pages 5218-5226

Shape specification for axially symmetric optical surfaces

Author keywords

[No Author keywords available]

Indexed keywords

CONSTRAINT THEORY; NUMERICAL ANALYSIS;

EID: 34247187459     PISSN: None     EISSN: 10944087     Source Type: Journal    
DOI: 10.1364/OE.15.005218     Document Type: Article
Times cited : (199)

References (8)
  • 1
    • 0038011608 scopus 로고    scopus 로고
    • Optical design with rotationally symmetric NURBS
    • See, for example, the discussion and references in
    • See, for example, the discussion and references in H. Chase, "Optical design with rotationally symmetric NURBS", SPIE Proceedings 4832, 10-24 (2002)
    • (2002) SPIE Proceedings , vol.4832 , pp. 10-24
    • Chase, H.1
  • 2
    • 0038349644 scopus 로고    scopus 로고
    • Superconic and subconic surface descriptions in optical design
    • Such matters are also treated within the manuals for commercial optical design software
    • and A. W. Greynolds, "Superconic and subconic surface descriptions in optical design," Proc. SPIE 4832, 1-9 (2002). Such matters are also treated within the manuals for commercial optical design software.
    • (2002) Proc. SPIE , vol.4832 , pp. 1-9
    • Greynolds, A.W.1
  • 3
    • 0000970108 scopus 로고
    • General ray-tracing procedure
    • see Eq, 16
    • G. H. Spencer and M. V. R.K. Murty, "General ray-tracing procedure," J. Opt. Soc. Am. 52, 672-678 (1962), see Eq. (16).
    • (1962) J. Opt. Soc. Am , vol.52 , pp. 672-678
    • Spencer, G.H.1    Murty, M.V.R.K.2
  • 5
    • 0037134397 scopus 로고    scopus 로고
    • On the coefficients of differentiated expansions and derivatives of Jacobi polynomials
    • E. H. Doha, "On the coefficients of differentiated expansions and derivatives of Jacobi polynomials," J. Phys. A: Math. Gen. 35, 3467-3478 (2002).
    • (2002) J. Phys. A: Math. Gen , vol.35 , pp. 3467-3478
    • Doha, E.H.1
  • 6
    • 84894390126 scopus 로고    scopus 로고
    • E. W. Weisstein, Jacobi Polynomial from MathWorld - A Wolfram Web Resource. http://mathworld.wolfram.com/JacobiPolynomial.html, see esp. Eqs. (10-14).
    • E. W. Weisstein, "Jacobi Polynomial" from MathWorld - A Wolfram Web Resource. http://mathworld.wolfram.com/JacobiPolynomial.html, see esp. Eqs. (10-14).
  • 7
    • 4344648067 scopus 로고
    • Conversion of polynomials between different polynomial bases
    • B. Y. Ting and Y. L. Luke, "Conversion of polynomials between different polynomial bases," IMA J. Numer. Anal., 1, 229-234 (1981).
    • (1981) IMA J. Numer. Anal , vol.1 , pp. 229-234
    • Ting, B.Y.1    Luke, Y.L.2
  • 8
    • 33845385806 scopus 로고    scopus 로고
    • A. J. E. M. Janssen and P. Dirksen, Concise formula for the Zernike coefficients of scaled pupils, J. Microlithogr., Microfabr., Microsyst. 5, 1-3 (2006). (Note that the Zernikes are also Jacobi polynomials.)
    • A. J. E. M. Janssen and P. Dirksen, "Concise formula for the Zernike coefficients of scaled pupils", J. Microlithogr., Microfabr., Microsyst. 5, 1-3 (2006). (Note that the Zernikes are also Jacobi polynomials.)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.