메뉴 건너뛰기




Volumn 87, Issue 8, 2007, Pages 1890-1903

Joint low-rank approximation for extracting non-Gaussian subspaces

Author keywords

Characteristic function; Fourth order cumulant tensor; Joint low rank approximation; Linear dimension reduction; Non Gaussian subspace

Indexed keywords

ALGORITHMS; EIGENVALUES AND EIGENFUNCTIONS; GAUSSIAN NOISE (ELECTRONIC); MATRIX ALGEBRA; TENSORS;

EID: 34247165067     PISSN: 01651684     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.sigpro.2007.01.033     Document Type: Article
Times cited : (12)

References (34)
  • 1
    • 0026191274 scopus 로고
    • Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture
    • Jutten C., and Hérault J. Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture. Signal Process. 25 (1991) 1-10
    • (1991) Signal Process. , vol.25 , pp. 1-10
    • Jutten, C.1    Hérault, J.2
  • 2
    • 0028416938 scopus 로고
    • Independent component analysis-a new concept?
    • Comon P. Independent component analysis-a new concept?. Signal Process. 36 (1994) 287-314
    • (1994) Signal Process. , vol.36 , pp. 287-314
    • Comon, P.1
  • 3
    • 0027812550 scopus 로고
    • Blind beamforming for non Gaussian signals
    • Cardoso J.-F., and Souloumiac A. Blind beamforming for non Gaussian signals. IEE Proc. F 140 6 (1993) 362-370
    • (1993) IEE Proc. F , vol.140 , Issue.6 , pp. 362-370
    • Cardoso, J.-F.1    Souloumiac, A.2
  • 4
    • 0029411030 scopus 로고
    • An information-maximization approach to blind separation and blind deconvolution
    • Bell A.J., and Sejnowski T.J. An information-maximization approach to blind separation and blind deconvolution. Neural Computation 7 (1995) 1129-1159
    • (1995) Neural Computation , vol.7 , pp. 1129-1159
    • Bell, A.J.1    Sejnowski, T.J.2
  • 6
    • 0001964859 scopus 로고    scopus 로고
    • Spikes and bumps: artefacts generated by independent component analysis with insufficient sample size
    • Hyvärinen A., Särelä J., and Vigário R. Spikes and bumps: artefacts generated by independent component analysis with insufficient sample size. Proceedings of ICA'99 (1999) 425-429
    • (1999) Proceedings of ICA'99 , pp. 425-429
    • Hyvärinen, A.1    Särelä, J.2    Vigário, R.3
  • 8
    • 84898962644 scopus 로고    scopus 로고
    • Independent component analysis for identification of artefacts in magnetoencephalographic recordings
    • MIT Press, Cambridge, MA
    • Vigário R., Jousmäki V., Hämäläinen M., Hari R., and Oja E. Independent component analysis for identification of artefacts in magnetoencephalographic recordings. Advances in Neural Information Processing Systems vol. 10 (1998), MIT Press, Cambridge, MA 229-235
    • (1998) Advances in Neural Information Processing Systems , vol.10 , pp. 229-235
    • Vigário, R.1    Jousmäki, V.2    Hämäläinen, M.3    Hari, R.4    Oja, E.5
  • 10
    • 0034222304 scopus 로고    scopus 로고
    • Emergence of phase and shift invariant features by decomposition of natural images into independent feature subspaces
    • Hyvärinen A., and Hoyer P. Emergence of phase and shift invariant features by decomposition of natural images into independent feature subspaces. Neural Computation 12 7 (2000) 1705-1720
    • (2000) Neural Computation , vol.12 , Issue.7 , pp. 1705-1720
    • Hyvärinen, A.1    Hoyer, P.2
  • 11
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum J.B., de Silva V., and Langford J.C. A global geometric framework for nonlinear dimensionality reduction. Science 290 5500 (2000) 2319-2323
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    de Silva, V.2    Langford, J.C.3
  • 12
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis S., and Saul L. Nonlinear dimensionality reduction by locally linear embedding. Science 290 5500 (2000) 2323-2326
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 13
    • 0016102310 scopus 로고
    • A projection pursuit algorithm for exploratory data analysis
    • Friedman J.H., and Tukey J.W. A projection pursuit algorithm for exploratory data analysis. IEEE Trans. Comput. 23 9 (1975) 881-890
    • (1975) IEEE Trans. Comput. , vol.23 , Issue.9 , pp. 881-890
    • Friedman, J.H.1    Tukey, J.W.2
  • 14
    • 0000263797 scopus 로고
    • Projection pursuit
    • Huber P.J. Projection pursuit. Ann. Statist. 13 (1985) 435-475
    • (1985) Ann. Statist. , vol.13 , pp. 435-475
    • Huber, P.J.1
  • 15
    • 0346307721 scopus 로고    scopus 로고
    • A fast fixed-point algorithm for independent component analysis
    • Hyvärinen A., and Oja E. A fast fixed-point algorithm for independent component analysis. Neural Computation 9 7 (1997) 1483-1492
    • (1997) Neural Computation , vol.9 , Issue.7 , pp. 1483-1492
    • Hyvärinen, A.1    Oja, E.2
  • 16
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • Hyvärinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Networks 10 3 (1999) 626-634
    • (1999) IEEE Trans. Neural Networks , vol.10 , Issue.3 , pp. 626-634
    • Hyvärinen, A.1
  • 17
    • 33847203655 scopus 로고    scopus 로고
    • M. Kawanabe, G. Blanchard, M. Sugiyama, K.-R. Müller, A new algorithm of non-Gaussian component analysis with radial kernel functions, Ann. Inst. Statist. Math. 59(1) (2007) 57-75.
  • 18
    • 33745683201 scopus 로고    scopus 로고
    • Uniqueness of non-Gaussian subspace analysis
    • Theis F.J., and Kawanabe M. Uniqueness of non-Gaussian subspace analysis. Proceedings of ICA 2006 (2006) 917-924
    • (2006) Proceedings of ICA 2006 , pp. 917-924
    • Theis, F.J.1    Kawanabe, M.2
  • 19
    • 0002845302 scopus 로고    scopus 로고
    • TDSEP-an efficient algorithm for blind separation using time structure
    • Niklasson L., Bodén M., and Ziemke T. (Eds), Springer, Berlin (Perspectives in Neural Computing)
    • Ziehe A., and Müller K.-R. TDSEP-an efficient algorithm for blind separation using time structure. In: Niklasson L., Bodén M., and Ziemke T. (Eds). Proceedings of the Eighth International Conference on Artificial Neural Networks, ICANN'98 (1998), Springer, Berlin 675-680 (Perspectives in Neural Computing)
    • (1998) Proceedings of the Eighth International Conference on Artificial Neural Networks, ICANN'98 , pp. 675-680
    • Ziehe, A.1    Müller, K.-R.2
  • 21
    • 34547268066 scopus 로고    scopus 로고
    • On the use of joint diagonalization in blind signal processing
    • Kos, Greece
    • Theis F.J., and Inouye Y. On the use of joint diagonalization in blind signal processing. Proceedings of ISCAS 2006 (2006), Kos, Greece
    • (2006) Proceedings of ISCAS 2006
    • Theis, F.J.1    Inouye, Y.2
  • 22
    • 33646271361 scopus 로고    scopus 로고
    • M. Kawanabe, Linear dimension reduction based on the fourth-order cumulant tensor, in: Proceedings of ICANN 2005, Lecture Notes in Computer Science, vol. 3697, 2005, pp. 151-156.
  • 23
    • 33745683287 scopus 로고    scopus 로고
    • M. Kawanabe, F.J. Theis, Estimating non-Gaussian subspaces by characteristic functions, in: J. Rosca, D. Erdogmus, J.C. Príncipe, S. Haykin (Eds.), Independent Component Analysis and Blind Signal Separation, Lecture Notes in Computer Science, vol. 3889, Springer, Berlin, 2006, pp. 157-164, ISBN 3-540-32630-8.
  • 24
    • 0033727638 scopus 로고    scopus 로고
    • Blind source separation via the second characteristic function
    • Yeredor A. Blind source separation via the second characteristic function. Signal Process. 80 5 (2000) 897-902
    • (2000) Signal Process. , vol.80 , Issue.5 , pp. 897-902
    • Yeredor, A.1
  • 25
    • 3142759950 scopus 로고    scopus 로고
    • A new concept for separability problems in blind source separation
    • Theis F.J. A new concept for separability problems in blind source separation. Neural Computation 16 (2004) 1827-1850
    • (2004) Neural Computation , vol.16 , pp. 1827-1850
    • Theis, F.J.1
  • 26
    • 73849142491 scopus 로고    scopus 로고
    • Multidimensional independent component analysis using characteristic functions
    • Theis F.J. Multidimensional independent component analysis using characteristic functions. Proceedings of EUSIPCO 2005 (2005)
    • (2005) Proceedings of EUSIPCO 2005
    • Theis, F.J.1
  • 27
    • 0011124306 scopus 로고    scopus 로고
    • Factorizing multivariate function classes
    • MIT Press, Cambridge, MA
    • Lin J.K. Factorizing multivariate function classes. Advances in Neural Information Processing Systems vol. 10 (1998), MIT Press, Cambridge, MA 563-569
    • (1998) Advances in Neural Information Processing Systems , vol.10 , pp. 563-569
    • Lin, J.K.1
  • 28
    • 0031271273 scopus 로고    scopus 로고
    • Blind source separation-semiparametric statistical approach
    • Amari S., and Cardoso J.-F. Blind source separation-semiparametric statistical approach. IEEE Trans. Signal Process. 45 11 (1997) 2692-2700
    • (1997) IEEE Trans. Signal Process. , vol.45 , Issue.11 , pp. 2692-2700
    • Amari, S.1    Cardoso, J.-F.2
  • 29
    • 0036648367 scopus 로고    scopus 로고
    • Non-orthogonal joint diagonalization in the leastsquares sense with application in blind source separation
    • Yeredor A. Non-orthogonal joint diagonalization in the leastsquares sense with application in blind source separation. IEEE Trans. Signal Process. 50 7 (2002) 1545-1553
    • (2002) IEEE Trans. Signal Process. , vol.50 , Issue.7 , pp. 1545-1553
    • Yeredor, A.1
  • 30
    • 0031191456 scopus 로고    scopus 로고
    • Blind separation of mixture of independent sources through a quasi-maximum likelihood approach
    • Pham D.T., and Garrat P. Blind separation of mixture of independent sources through a quasi-maximum likelihood approach. IEEE Trans. Signal Process. 45 7 (1997) 1712-1725
    • (1997) IEEE Trans. Signal Process. , vol.45 , Issue.7 , pp. 1712-1725
    • Pham, D.T.1    Garrat, P.2
  • 31
    • 21844458452 scopus 로고    scopus 로고
    • Estimating functions for blind separation when sources have variance dependencies
    • Kawanabe M., and Müller K.-R. Estimating functions for blind separation when sources have variance dependencies. J. Mach. Learning Res. 6 (2005) 453-482
    • (2005) J. Mach. Learning Res. , vol.6 , pp. 453-482
    • Kawanabe, M.1    Müller, K.-R.2
  • 32
    • 0033556834 scopus 로고    scopus 로고
    • Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super-Gaussian sources
    • Lee T.-W., Girolami M., and Sejnowski T.J. Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super-Gaussian sources. Neural Computation 11 2 (1999) 417-441
    • (1999) Neural Computation , vol.11 , Issue.2 , pp. 417-441
    • Lee, T.-W.1    Girolami, M.2    Sejnowski, T.J.3
  • 33
    • 33745683202 scopus 로고    scopus 로고
    • Z. Szabó, B. Póczos, A.L. Horincz, Cross-entropy optimization for independent process analysis, in: J. Rosca, D. Erdogmus, J.C. Príncipe, S. Haykin (Eds.), Independent Component Analysis and Blind Signal Separation, Lecture Notes in Computer Science, vol. 3889, Springer, Berlin, 2006, pp. 909-916, ISBN 3-540-32630-8.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.