메뉴 건너뛰기




Volumn 2, Issue , 2006, Pages 10054-10057

Artificial neural network ensemble for land cover classification

Author keywords

Artificial neural network; Ensemble; Land cover classification; Multisource

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA ACQUISITION; LANDFORMS; MAXIMUM LIKELIHOOD ESTIMATION; REMOTE SENSING; STATISTICAL METHODS;

EID: 34047227551     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/WCICA.2006.1713966     Document Type: Conference Paper
Times cited : (8)

References (11)
  • 1
    • 0036213079 scopus 로고    scopus 로고
    • Status of land cover classification accuracy assessment
    • G. M. Foody, "Status of land cover classification accuracy assessment," Remote Sensing of Environment, vol. 80, pp. 185-201, 2002.
    • (2002) Remote Sensing of Environment , vol.80 , pp. 185-201
    • Foody, G.M.1
  • 3
    • 33645268189 scopus 로고    scopus 로고
    • Remote sensing and geographic information integration: A case study; Bozcaada & Gokceada Island,
    • Msc Thesis, Institution of Science and Technology, Istanbul Technical University
    • Bektas, F., "Remote sensing and geographic information integration: A case study; Bozcaada & Gokceada Island," Msc Thesis, Institution of Science and Technology, Istanbul Technical University, 2003.
    • (2003)
    • Bektas, F.1
  • 4
    • 0029532172 scopus 로고
    • The integration of geographic data with remotely sensed imagery to improve classification in an urban area
    • Harris, P. M., and Ventura, S. J., "The integration of geographic data with remotely sensed imagery to improve classification in an urban area," Photogrametric Engineering and Remote Sensing, vol. 61, pp. 993-998, 1995.
    • (1995) Photogrametric Engineering and Remote Sensing , vol.61 , pp. 993-998
    • Harris, P.M.1    Ventura, S.J.2
  • 5
    • 0031106314 scopus 로고    scopus 로고
    • Strategies and best practice for neural network image classification
    • I. Kanellopoulos and G. G. Wilkinson, "Strategies and best practice for neural network image classification", Int. J. Remote Sensing, vol. 18, pp. 711-725, 1997.
    • (1997) Int. J. Remote Sensing , vol.18 , pp. 711-725
    • Kanellopoulos, I.1    Wilkinson, G.G.2
  • 6
    • 0042427272 scopus 로고    scopus 로고
    • Comparison of neural networks and statistical methods in classification of ecological habitats using FIA data
    • C. M. Liu, L. J. Zhang, C. J. Davis, D. S. Solomon, et al, "Comparison of neural networks and statistical methods in classification of ecological habitats using FIA data", Forest Sci., vol. 49, pp. 619-631, 2003.
    • (2003) Forest Sci , vol.49 , pp. 619-631
    • Liu, C.M.1    Zhang, L.J.2    Davis, C.J.3    Solomon, D.S.4
  • 8
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Zhou, Z.H., Wu, J.X. et al, "Ensembling neural networks: Many could be better than all," Artificial Intelligence, vol. 137 pp. 239-263, 2002.
    • (2002) Artificial Intelligence , vol.137 , pp. 239-263
    • Zhou, Z.H.1    Wu, J.X.2
  • 9
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, "Bagging predictors," Machine Learning vol. 24, p. 123-140, 1996.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 11
    • 0003396255 scopus 로고    scopus 로고
    • The mathworks, version 4, the mathworks, Inc, Natick, Massachussets
    • The mathworks, Neural network toolbox user's guide (version 4), the mathworks, Inc., Natick, Massachussets, 2001.
    • (2001) Neural network toolbox user's guide


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.