-
1
-
-
34249826393
-
An evaluation of Llinearly combining density estimators via stacking
-
July
-
P. Smyth and D. Wolpert, An evaluation of Llinearly combining density estimators via stacking, Machine Learning, vol 36, 1/2, pp53-89, July 1999.
-
(1999)
Machine Learning
, vol.36
, Issue.1-2
, pp. 53-89
-
-
Smyth, P.1
Wolpert, D.2
-
2
-
-
0026692226
-
Stacked Generalization
-
D. Wolpert, Stacked Generalization, Neural Networks, 5(2):241-260.
-
Neural Networks
, vol.5
, Issue.2
, pp. 241-260
-
-
Wolpert, D.1
-
4
-
-
84898978212
-
Boosting algorithms as gradient descent in function space
-
L. Mason, J. Baxter, P. Bartlett and P. Frean, Boosting algorithms as gradient descent in function space, Advances in Neural Information Processing 12, pp512-518, 1999.
-
(1999)
Advances in Neural Information Processing
, vol.12
, pp. 512-518
-
-
Mason, L.1
Baxter, J.2
Bartlett, P.3
Frean, P.4
-
5
-
-
85156248415
-
Improved Gaussian mixture density estimates using bayesian penalty terms and network averaging'
-
D. Ormoneit and V. Tresp, Improved Gaussian mixture density estimates using bayesian penalty terms and network averaging', Advances in Neural Information Processing 8, pp 542-548, 1996.
-
(1996)
Advances in Neural Information Processing
, vol.8
, pp. 542-548
-
-
Ormoneit, D.1
Tresp, V.2
-
6
-
-
0000262562
-
Hierarchical mixtures of experts and the EM algoriths
-
M. Jordan and R. Jacobs, Hierarchical mixtures of experts and the EM algoriths, Neural Compulation, 6, pp 181-214, 1994.
-
(1994)
Neural Compulation
, vol.6
, pp. 181-214
-
-
Jordan, M.1
Jacobs, R.2
-
9
-
-
0030211964
-
Bagging predictors
-
L. Breiman, Bagging predictors, Machine Learning, 24, pp 123-140, 1996.
-
(1996)
Machine Learning
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
10
-
-
0003929807
-
-
Technical Report 504, Department of Statistics, University of California, Berkeley
-
L. Breiman, Prediction games and arcing algorithms. Technical Report 504, Department of Statistics, University of California, Berkeley, 1998.
-
(1998)
Prediction Games and Arcing Algorithms
-
-
Breiman, L.1
-
12
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
April
-
J. Friedman, T. Hastie and R. Tibshirani, Additive logistic regression: a statistical view of boosting, The Annals of Statistics, 38(2):337-374, April 2000.
-
(2000)
The Annals of Statistics
, vol.38
, Issue.2
, pp. 337-374
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
13
-
-
0002978642
-
Experiments with a new boosting algorithm
-
Bari, Italy, July 3-6
-
Y. Freund and R. Shapire, Experiments with a new boosting algorithm, Proceedings of the Thirteenth International Conference on Machine Learning, Bari, Italy, July 3-6, pp 148-156,1996.
-
(1996)
Proceedings of the Thirteenth International Conference on Machine Learning
, pp. 148-156
-
-
Freund, Y.1
Shapire, R.2
-
14
-
-
0032280519
-
Boosting the margin: A new explanation for the effetiveness of voting methods
-
October
-
R. Shapire, Y. Freund, P. Bartlett and W. Lee, Boosting the margin: a new explanation for the effetiveness of voting methods, The Annals of Statistics, 26(5):1651-1686, October, 1998.
-
(1998)
The Annals of Statistics
, vol.26
, Issue.5
, pp. 1651-1686
-
-
Shapire, R.1
Freund, Y.2
Bartlett, P.3
Lee, W.4
-
16
-
-
0001963082
-
A short introduction to boosting
-
September
-
Y. Freund and R. E. Shapire, A short introduction to boosting, Journal of Japanese Society for Artificial Intelligence, 14(5):771-780, September, 1999.
-
(1999)
Journal of Japanese Society for Artificial Intelligence
, vol.14
, Issue.5
, pp. 771-780
-
-
Freund, Y.1
Shapire, R.E.2
-
17
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
August
-
Y. Freund and R. Shapire, A decision-theoretic generalization of on-line learning and an application to boosting, Journal of Computer and System Sciences, 55(1):119-139, August 1997.
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Shapire, R.2
-
18
-
-
27444435127
-
Modeling auction price uncertainty using boosting-based conditional density estimation
-
R. Shapire, P. Stone, D. McAllester, M. Littman and J. Csirik, Modeling auction price uncertainty using boosting-based conditional density estimation, Machine Learning: Proceedings of the Nineteenth International Conference, 2002.
-
(2002)
Machine Learning: Proceedings of the Nineteenth International Conference
-
-
Shapire, R.1
Stone, P.2
McAllester, D.3
Littman, M.4
Csirik, J.5
-
19
-
-
0038391123
-
Bias, variance and the combination of estimators; the case of linear least squares
-
eds. G. Tesauro, D. Touretzky and T. Leen
-
R. Meir, Bias, variance and the combination of estimators; the case of linear least squares, Advances in Neural Information Processing Systems, vol. 7, eds. G. Tesauro, D. Touretzky and T. Leen, 1995.
-
(1995)
Advances in Neural Information Processing Systems
, vol.7
-
-
Meir, R.1
-
21
-
-
0002787457
-
Architecture Selection Strategies for Neural Networks: Application to Corporate Bond Rating Prediction
-
Refenes A.N. (ed.), John Wiley & Sons
-
J. Moody and J. Utans, Architecture Selection Strategies for Neural Networks: Application to Corporate Bond Rating Prediction, in Refenes A.N. (ed.), Neural Networks in the Capital Markets, John Wiley & Sons, 1994.
-
(1994)
Neural Networks in the Capital Markets
-
-
Moody, J.1
Utans, J.2
|