-
2
-
-
0001164218
-
-
Fürholz, U.; Bürgi, H.-B.; Wagner, F. E.; Stebler, A.; Ammeter, J. H.; Krausz, E.; Clark, R. J. H.; Stead, M. J.; Ludi, A. J. Am. Chem. Soc. 1984, 106, 121-123.
-
(1984)
J. Am. Chem. Soc
, vol.106
, pp. 121-123
-
-
Fürholz, U.1
Bürgi, H.-B.2
Wagner, F.E.3
Stebler, A.4
Ammeter, J.H.5
Krausz, E.6
Clark, R.J.H.7
Stead, M.J.8
Ludi, A.9
-
3
-
-
4243782970
-
-
Creutz, C. Inorg. Chem. 1978, 17, 3723-3725.
-
(1978)
Inorg. Chem
, vol.17
, pp. 3723-3725
-
-
Creutz, C.1
-
4
-
-
0001328773
-
-
Sutton, J. E.; Sutton, P. M.; Taube, H. Inorg. Chem. 1979, 18, 1017-1021.
-
(1979)
Inorg. Chem
, vol.18
, pp. 1017-1021
-
-
Sutton, J.E.1
Sutton, P.M.2
Taube, H.3
-
5
-
-
0035470233
-
-
Demadis, K. D.; Hartshorn, C. M.; Meyer, T. J. Chem. Rev. 2001, 101, 2655-2685.
-
(2001)
Chem. Rev
, vol.101
, pp. 2655-2685
-
-
Demadis, K.D.1
Hartshorn, C.M.2
Meyer, T.J.3
-
6
-
-
28744457743
-
-
Reimers, J. R.; Cai, Z.-L.; Hush, N. S. Chem. Phys. 2005, 319, 39-51.
-
(2005)
Chem. Phys
, vol.319
, pp. 39-51
-
-
Reimers, J.R.1
Cai, Z.-L.2
Hush, N.S.3
-
9
-
-
84955401607
-
-
Oh, D. H.; Sano, M.; Boxer, S. G. J. Am. Chem. Soc. 1991, 113, 6880-6890.
-
(1991)
J. Am. Chem. Soc
, vol.113
, pp. 6880-6890
-
-
Oh, D.H.1
Sano, M.2
Boxer, S.G.3
-
11
-
-
0033572947
-
-
Bencini, A.; Ciofini, I.; Daul, C. A.; Ferretti, A. J. Am. Chem. Soc. 1999, 121, 11418-11424.
-
(1999)
J. Am. Chem. Soc
, vol.121
, pp. 11418-11424
-
-
Bencini, A.1
Ciofini, I.2
Daul, C.A.3
Ferretti, A.4
-
12
-
-
0000169658
-
-
Chen, Z.; Bian, J.; Zhang, L.; Li, S. J. Chem. Phys. 1999, 111, 10926-10933.
-
(1999)
J. Chem. Phys
, vol.111
, pp. 10926-10933
-
-
Chen, Z.1
Bian, J.2
Zhang, L.3
Li, S.4
-
13
-
-
0037178542
-
-
Hardesty, J.; Goh, S. K.; Marynick, D. S. J. Mol. Struct: THEOCHEM 2002, 588, 223-226.
-
(2002)
J. Mol. Struct: THEOCHEM
, vol.588
, pp. 223-226
-
-
Hardesty, J.1
Goh, S.K.2
Marynick, D.S.3
-
15
-
-
0034298127
-
-
Ferretti, A.; Improta, R.; Lami, A.; Villani, G. J. Phys. Chem. A 2000, 104, 9591-9599.
-
(2000)
J. Phys. Chem. A
, vol.104
, pp. 9591-9599
-
-
Ferretti, A.1
Improta, R.2
Lami, A.3
Villani, G.4
-
18
-
-
0000854889
-
-
Hupp, J. T.; Dong, Y.; Blackbourn, R. L.; Lu, H. J. Phys. Chem. 1993, 97, 3278-3282.
-
(1993)
J. Phys. Chem
, vol.97
, pp. 3278-3282
-
-
Hupp, J.T.1
Dong, Y.2
Blackbourn, R.L.3
Lu, H.4
-
19
-
-
0000431551
-
-
Lau, K. W.; Hu, A. M.-H.; Yen, M. H.-J.; Fung, E. Y.; Grzybicki, S.; Matamoros, R.; Curtis, J. C. Inorg. Chem. Acta 1994, 226, 137-143.
-
(1994)
Inorg. Chem. Acta
, vol.226
, pp. 137-143
-
-
Lau, K.W.1
Hu, A.M.-H.2
Yen, M.H.-J.3
Fung, E.Y.4
Grzybicki, S.5
Matamoros, R.6
Curtis, J.C.7
-
20
-
-
0035837973
-
-
Cacelli, I.; Ferretti, A.; Toniolo, A. J. Phys. Chem. A 2001, 105, 4480-4487.
-
(2001)
J. Phys. Chem. A
, vol.105
, pp. 4480-4487
-
-
Cacelli, I.1
Ferretti, A.2
Toniolo, A.3
-
21
-
-
0000411005
-
-
Farazdel, A.; Dupuis, M.; Clementi, E.; Aviram, A. J. Am. Chem. Soc. 1990, 112, 4206-4214.
-
(1990)
J. Am. Chem. Soc
, vol.112
, pp. 4206-4214
-
-
Farazdel, A.1
Dupuis, M.2
Clementi, E.3
Aviram, A.4
-
22
-
-
34047123842
-
-
To obtain the localized UHF wave functions, we adopted the following strategy. At the beginning, we prepared the localized wave function for the geometry where one of the metal-bridge distances was taken to be very long but where the other was normal. The obtained wave function is well-localized. After a check of S2 and the spin density, we calculated the wave function of the ions whose metal-bridge distance was taken to be moderately shorter, where we employed the previously calculated, well-localized UHF wave function as an initial guess. Until the metal-bridge distance became the same as that of the real one, we continued this procedure. This technique presented the well-localized, broken-symmetry UHF wave function; for instance, the spin densities on Ru centers of 1 are 1.09 and -0.01, respectively. The bond order analysis showed that the free valence electrons on one metal and those on the other at Δr =0.00 are 0.95 and 0.00 for 1, 0.92
-
2 values somewhat large.
-
-
-
-
23
-
-
34047093481
-
-
In the present study, UHF wave functions have been used just as basis functions to construct the total wave function, and it might be unsuitable to call it diabatic basis in a precise sense. However, we use the words diabatic or adiabatic throughout the paper to describe the transformation and mixing nature of the wave functions just for convenience
-
In the present study, UHF wave functions have been used just as basis functions to construct the total wave function, and it might be unsuitable to call it diabatic basis in a precise sense. However, we use the words diabatic or adiabatic throughout the paper to describe the transformation and mixing nature of the wave functions just for convenience.
-
-
-
-
24
-
-
0542382495
-
-
Wong, M. W.; Frisch, M. J.; Wiberg, K. B. J. Am. Chem. Soc. 1991, 113, 4776-4782.
-
(1991)
J. Am. Chem. Soc
, vol.113
, pp. 4776-4782
-
-
Wong, M.W.1
Frisch, M.J.2
Wiberg, K.B.3
-
25
-
-
0001002538
-
-
King, H. F.; Stanton, R. E.; Kim, H.; Wyatt, R. E.; Parr, R. G. J. Chem. Phys. 1967, 47, 1936-1941.
-
(1967)
J. Chem. Phys
, vol.47
, pp. 1936-1941
-
-
King, H.F.1
Stanton, R.E.2
Kim, H.3
Wyatt, R.E.4
Parr, R.G.5
-
26
-
-
84893169025
-
-
Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. J.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. J. Comput. Chem. 1993, 14, 1347-1363.
-
(1993)
J. Comput. Chem
, vol.14
, pp. 1347-1363
-
-
Schmidt, M.W.1
Baldridge, K.K.2
Boatz, J.A.3
Elbert, S.T.4
Gordon, M.S.5
Jensen, J.H.6
Koseki, S.7
Matsunaga, N.8
Nguyen, K.A.9
Su, S.J.10
Windus, T.L.11
Dupuis, M.12
Montgomery, J.A.13
-
28
-
-
0033426488
-
-
Koga, T.; Tatewaki, H.; Matsuyama, H.; Satoh. Y. Theor. Chem. Acc. 1999, 102, 105-111.
-
(1999)
Theor. Chem. Acc
, vol.102
, pp. 105-111
-
-
Koga, T.1
Tatewaki, H.2
Matsuyama, H.3
Satoh, Y.4
-
29
-
-
43949164303
-
-
Ehlers, A. W.; Böhme, M.; Dapprich, S.; Gobbi, A.; Höllwarth, A.; Jonas, V.; Köhler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G. Chem. Phys. Lett. 1993, 208, 111-114.
-
(1993)
Chem. Phys. Lett
, vol.208
, pp. 111-114
-
-
Ehlers, A.W.1
Böhme, M.2
Dapprich, S.3
Gobbi, A.4
Höllwarth, A.5
Jonas, V.6
Köhler, K.F.7
Stegmann, R.8
Veldkamp, A.9
Frenking, G.10
-
30
-
-
34047142812
-
-
Electron-transfer matrix elements calculated with a smaller basis set and with a larger one are 0.276 and 0.266 eV, respectively.
-
Electron-transfer matrix elements calculated with a smaller basis set and with a larger one are 0.276 and 0.266 eV, respectively.
-
-
-
-
32
-
-
34047136722
-
-
Frisch, M. J, Trucks, G. W, Schlegel, H. B, Scuseria, G. E, Robb, M. A, Cheeseman, J. R, Zakrzewski, V. G, Montgomery, J. A, Jr, Stratmann, R. E, Burant, J. C, Dapprich, S, Millam, J. M, Daniels, A. D, Kudin, K. N, Strain, M. C, Farkas, O, Tomasi, J, Barone, V, Cossi, M, Cammi, R, Mennucci, B, Pomelli, C, Adamo, C, Clifford, S, Ochterski, J, Petersson, G. A, Ayala, P. Y, Cui, Q, Morokuma, K, Malick, D. K, Rabuck, A. D, Raghavachari, K, Foresman, J. B, Cioslowski, J, Ortiz, J. V, Stefanov, B. B, Liu, G, Liashenko, A, Piskorz, P, Komaromi, I, Gomperts, R, Martin, R. L, Fox, D. J, Keith, T, Al-Laham, M. A, Peng, C. Y, Nanayakkara, A, Gonzalez, C, Challacombe, M, Gill, P. M. W, Johnson, B. G, Chen, W, Wong, M. W, Andres, J. L, Head-Gordon, M, Replogle, E. S, Pople, J. A. Gaussian 98, revision A9; Gaussian, Inc, Pittsburgh, PA, 1998
-
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, revision A9; Gaussian, Inc.; Pittsburgh, PA, 1998.
-
-
-
-
33
-
-
34047188121
-
-
To calculate the potential energy surface (PES, we fixed the metal-NH3 distance and changed only Δr. We examined how much the relaxation of the metal-NH3 distances influences the PES as follows. We optimized Ru-NH3 distances with the DFT(B3LYP) method at Δr, 0.00 and Δr, 0.09 Å. The maximum difference of the equatorial Ru-NH3 distance between these two geometries is negligibly small (0.005 Å, as reported.11 On the other hand, one of the axial Ru-NH3 distances at Δr, 0.09 Å becomes longer by 0.0157 Å and another one becomes shorter by 0.0249 Å than those at Δr, 0.00 Å. To evaluate how much the relaxation of the axial Ru-NH3 distances influences the PES, we changed the axial RU-NH3 distances at Δr, 0.09Å, considering the DFT-optimized Ru-NH3 bond distances see Supp
-
3 distances for the PES (see Supporting Information Figure S2 for details).
-
-
-
-
34
-
-
0001226376
-
-
Koga, N.; Sameshima, K.; Morokuma, K. J. Phys. Chem. 1993, 97, 13117-13125.
-
(1993)
J. Phys. Chem
, vol.97
, pp. 13117-13125
-
-
Koga, N.1
Sameshima, K.2
Morokuma, K.3
-
35
-
-
0003720693
-
-
Elsevier: Amsterdam, The Netherlands, New York
-
Fraga, S.; Saxena, K.; Karwowski, J. Handbook of Atomic Data; Elsevier: Amsterdam, The Netherlands, New York, 1976.
-
(1976)
Handbook of Atomic Data
-
-
Fraga, S.1
Saxena, K.2
Karwowski, J.3
-
36
-
-
34047110367
-
-
2 + (M = Ru or Os) with the HF method. The orbital energies of the dπ orbital are -0.6908 eV for Ru and -0.6231 eV for Os.
-
2 + (M = Ru or Os) with the HF method. The orbital energies of the dπ orbital are -0.6908 eV for Ru and -0.6231 eV for Os.
-
-
-
-
37
-
-
34047183837
-
-
This decrease arises from the decrease in skk b-b, as shown in Figure 6
-
b-b , as shown in Figure 6.
-
-
-
|