-
2
-
-
12044252245
-
-
0028-0836 10.1038/351467a0
-
P. T. Callaghan, A. Coy, D. MacGowan, K. J. Packer, and F. O. Zelaya, Nature 0028-0836 10.1038/351467a0 351, 467 (1991).
-
(1991)
Nature
, vol.351
, pp. 467
-
-
Callaghan, P.T.1
Coy, A.2
MacGowan, D.3
Packer, K.J.4
Zelaya, F.O.5
-
3
-
-
4244040916
-
-
0031-9007 10.1103/PhysRevLett.68.3555
-
P. P. Mitra, P. N. Sen, L. M. Schwartz, and P. Le Doussal, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.68.3555 68, 3555 (1992).
-
(1992)
Phys. Rev. Lett.
, vol.68
, pp. 3555
-
-
Mitra, P.P.1
Sen, P.N.2
Schwartz, L.M.3
Le Doussal, P.4
-
5
-
-
43949161160
-
-
M. D. Hürlimann, K. G. Helmer, L. L. Latour, and C. H. Sotak, J. Magn. Reson., Ser. A 111, 169 (1994).
-
(1994)
J. Magn. Reson., Ser. A
, vol.111
, pp. 169
-
-
Hürlimann, M.D.1
Helmer, K.G.2
Latour, L.L.3
Sotak, C.H.4
-
6
-
-
0027974237
-
-
M. D. King, J. Houseman, S. A. Roussel, N. van Bruggen, S. R. Williams, and D. G. Gadian, Magn. Reson. Med. 32, 707 (1994).
-
(1994)
Magn. Reson. Med.
, vol.32
, pp. 707
-
-
King, M.D.1
Houseman, J.2
Roussel, S.A.3
Van Bruggen, N.4
Williams, S.R.5
Gadian, D.G.6
-
7
-
-
0033581467
-
-
0031-9007 10.1103/PhysRevLett.83.3324
-
R. W. Mair, G. P. Wong, D. Hoffmann, M. D. Hürlimann, S. Patz, L. M. Schwartz, and R. L. Walsworth, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett. 83.3324 83, 3324 (1999).
-
(1999)
Phys. Rev. Lett.
, vol.83
, pp. 3324
-
-
Mair, R.W.1
Wong, G.P.2
Hoffmann, D.3
Hürlimann, M.D.4
Patz, S.5
Schwartz, L.M.6
Walsworth, R.L.7
-
8
-
-
0034644197
-
-
0028-0836 10.1038/35018057
-
Y. -Q. Song, S. Ryu, and P. N. Sen, Nature 0028-0836 10.1038/35018057 406, 178 (2000).
-
(2000)
Nature
, vol.406
, pp. 178
-
-
Song, Y.-Q.1
Ryu, S.2
Sen, P.N.3
-
9
-
-
14744296346
-
-
0031-9007 10.1103/PhysRevLett.89.278101
-
V. G. Kiselev and D. S. Novikov, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.89.278101 89, 278101 (2002).
-
(2002)
Phys. Rev. Lett.
, vol.89
, pp. 278101
-
-
Kiselev, V.G.1
Novikov, D.S.2
-
10
-
-
0036260633
-
-
0740-3194 10.1002/mrm.10173
-
H. E. Möller, X. J. Chen, B. Saam, K. D. Hagspiel, G. A. Johnson, T. A. Altes, E. E. de Lange, and H. -U. Kauczor, Magn. Reson. Med. 0740-3194 10.1002/mrm.10173 47, 1029 (2002).
-
(2002)
Magn. Reson. Med.
, vol.47
, pp. 1029
-
-
Möller, H.E.1
Chen, X.J.2
Saam, B.3
Hagspiel, K.D.4
Johnson, G.A.5
Altes, T.A.6
De Lange, E.E.7
Kauczor, H.-U.8
-
11
-
-
4944250583
-
-
E. J. R. van Beek, J. M. Wild, H. -U. Kauczor, W. Schreiber, J. P. Mugler III, and E. E. de Lange, J. Magn. Reson Imaging 20, 540 (2004).
-
(2004)
J. Magn. Reson Imaging
, vol.20
, pp. 540
-
-
Van Beek, E.J.R.1
Wild, J.M.2
Kauczor, H.-U.3
Schreiber, W.4
Mugler III, J.P.5
De Lange, E.E.6
-
13
-
-
0035870703
-
-
0021-9606 10.1063/1.1356010
-
S. Axelrod and P. N. Sen, J. Chem. Phys. 0021-9606 10.1063/1.1356010 114, 6878 (2001).
-
(2001)
J. Chem. Phys.
, vol.114
, pp. 6878
-
-
Axelrod, S.1
Sen, P.N.2
-
14
-
-
18444369287
-
-
1043-7347 10.1002/cmr.a.20017
-
P. N. Sen, Concepts Magn. Reson. 1043-7347 10.1002/cmr.a.20017 23A, 1 (2004).
-
(2004)
Concepts Magn. Reson.
, vol.23
, pp. 1
-
-
Sen, P.N.1
-
17
-
-
0000335075
-
-
L. L. Latour, P. P. Mitra, R. L. Kleinberg, and C. H. Sotak, J. Magn. Reson., Ser. A 101, 342 (1993).
-
(1993)
J. Magn. Reson., Ser. A
, vol.101
, pp. 342
-
-
Latour, L.L.1
Mitra, P.P.2
Kleinberg, R.L.3
Sotak, C.H.4
-
18
-
-
0004973393
-
-
K. G. Helmer, M. D. Hürlimann, T. M. de Swiet, P. N. Sen, and C. H. Sotak, J. Magn. Reson., Ser. A 115, 257 (1995).
-
(1995)
J. Magn. Reson., Ser. A
, vol.115
, pp. 257
-
-
Helmer, K.G.1
Hürlimann, M.D.2
De Swiet, T.M.3
Sen, P.N.4
Sotak, C.H.5
-
19
-
-
0033854230
-
-
B. T. Saam, D. A. Yablonskiy, V. D. Kodibagkar, J. C. Leawoods, D. S. Gierada, J. D. Cooper, S. S. Lefrak, and M. S. Conradi, Magn. Reson. Med. 44, 174 (2000).
-
(2000)
Magn. Reson. Med.
, vol.44
, pp. 174
-
-
Saam, B.T.1
Yablonskiy, D.A.2
Kodibagkar, V.D.3
Leawoods, J.C.4
Gierada, D.S.5
Cooper, J.D.6
Lefrak, S.S.7
Conradi, M.S.8
-
20
-
-
0037022621
-
-
0027-8424 10.1073/pnas.052594699
-
D. A. Yablonskiy, A. L. Sukstanskii, J. C. Leawoods, D. S. Gierada, G. L. Bretthorst, S. S. Lefrak, J. D. Cooper, and M. S. Conradi, Proc. Natl. Acad. Sci. U.S.A. 0027-8424 10.1073/pnas.052594699 99, 3111 (2002).
-
(2002)
Proc. Natl. Acad. Sci. U.S.A.
, vol.99
, pp. 3111
-
-
Yablonskiy, D.A.1
Sukstanskii, A.L.2
Leawoods, J.C.3
Gierada, D.S.4
Bretthorst, G.L.5
Lefrak, S.S.6
Cooper, J.D.7
Conradi, M.S.8
-
21
-
-
33749622370
-
-
0031-899X 10.1103/PhysRev.80.580
-
E. L. Hahn, Phys. Rev. 0031-899X 10.1103/PhysRev.80.580 80, 580 (1950).
-
(1950)
Phys. Rev.
, vol.80
, pp. 580
-
-
Hahn, E.L.1
-
22
-
-
33847534249
-
-
0031-899X 10.1103/PhysRev.94.630
-
H. Y. Carr and E. M. Purcell, Phys. Rev. 0031-899X 10.1103/PhysRev.94.630 94, 630 (1954).
-
(1954)
Phys. Rev.
, vol.94
, pp. 630
-
-
Carr, H.Y.1
Purcell, E.M.2
-
23
-
-
0001423628
-
-
0021-9606 10.1063/1.1731821
-
D. E. Woessner, J. Chem. Phys. 0021-9606 10.1063/1.1731821 34, 2057 (1961).
-
(1961)
J. Chem. Phys.
, vol.34
, pp. 2057
-
-
Woessner, D.E.1
-
26
-
-
36049058958
-
-
0031-899X 10.1103/PhysRev.151.273
-
B. Robertson, Phys. Rev. 0031-899X 10.1103/PhysRev.151.273 151, 273 (1966).
-
(1966)
Phys. Rev.
, vol.151
, pp. 273
-
-
Robertson, B.1
-
27
-
-
36749113823
-
-
0021-9606 10.1063/1.1680931
-
C. H. Neuman, J. Chem. Phys. 0021-9606 10.1063/1.1680931 60, 4508 (1974).
-
(1974)
J. Chem. Phys.
, vol.60
, pp. 4508
-
-
Neuman, C.H.1
-
30
-
-
0000533080
-
-
0163-1829 10.1103/PhysRevB.32.2798
-
J. C. Tarczon and W. P. Halperin, Phys. Rev. B 0163-1829 10.1103/PhysRevB.32.2798 32, 2798 (1985).
-
(1985)
Phys. Rev. B
, vol.32
, pp. 2798
-
-
Tarczon, J.C.1
Halperin, W.P.2
-
32
-
-
36449004976
-
-
0021-9606 10.1063/1.467447
-
A. Coy and P. T. Callaghan, J. Chem. Phys. 0021-9606 10.1063/1.467447 101, 4599 (1994).
-
(1994)
J. Chem. Phys.
, vol.101
, pp. 4599
-
-
Coy, A.1
Callaghan, P.T.2
-
34
-
-
0000146706
-
-
0021-9606 10.1063/1.467127
-
T. M. de Swiet and P. N. Sen, J. Chem. Phys. 0021-9606 10.1063/1.467127 100, 5597 (1994).
-
(1994)
J. Chem. Phys.
, vol.100
, pp. 5597
-
-
De Swiet, T.M.1
Sen, P.N.2
-
35
-
-
0000594062
-
-
M. D. Hürlimann, K. G. Helmer, T. M. de Swiet, P. N. Sen, and C. H. Sotak, J. Magn. Reson., Ser. A 113, 260 (1995).
-
(1995)
J. Magn. Reson., Ser. A
, vol.113
, pp. 260
-
-
Hürlimann, M.D.1
Helmer, K.G.2
De Swiet, T.M.3
Sen, P.N.4
Sotak, C.H.5
-
36
-
-
0000619419
-
-
1063-651X 10.1103/PhysRevE.52.6516
-
D. J. Bergman and K. -J. Dunn, Phys. Rev. E 1063-651X 10.1103/PhysRevE.52.6516 52, 6516 (1995).
-
(1995)
Phys. Rev. E
, vol.52
, pp. 6516
-
-
Bergman, D.J.1
Dunn, K.-J.2
-
38
-
-
0002059277
-
-
1090-7807 10.1006/jmre.2000.2185
-
L. J. Zielinski and P. N. Sen, J. Magn. Reson. 1090-7807 10.1006/jmre.2000.2185 147, 95 (2000).
-
(2000)
J. Magn. Reson.
, vol.147
, pp. 95
-
-
Zielinski, L.J.1
Sen, P.N.2
-
39
-
-
36149003638
-
-
0031-899X 10.1103/PhysRev.104.563
-
H. C. Torrey, Phys. Rev. 0031-899X 10.1103/PhysRev.104.563 104, 563 (1956).
-
(1956)
Phys. Rev.
, vol.104
, pp. 563
-
-
Torrey, H.C.1
-
40
-
-
0002152987
-
-
A. Caprihan, L. Z. Wang, and E. Fukushima, J. Magn. Reson., Ser. A 118, 94 (1996).
-
(1996)
J. Magn. Reson., Ser. A
, vol.118
, pp. 94
-
-
Caprihan, A.1
Wang, L.Z.2
Fukushima, E.3
-
41
-
-
0001887257
-
-
1090-7807 10.1006/jmre.1997.1233
-
P. T. Callaghan, J. Magn. Reson. 1090-7807 10.1006/jmre.1997.1233 129, 74 (1997).
-
(1997)
J. Magn. Reson.
, vol.129
, pp. 74
-
-
Callaghan, P.T.1
-
42
-
-
0000749452
-
-
1090-7807 10.1006/jmre.1998.1679
-
S. L. Codd and P. T. Callaghan, J. Magn. Reson. 1090-7807 10.1006/jmre.1998.1679 137, 358 (1999).
-
(1999)
J. Magn. Reson.
, vol.137
, pp. 358
-
-
Codd, S.L.1
Callaghan, P.T.2
-
43
-
-
0347410237
-
-
0163-1829 10.1103/PhysRevB.58.14171
-
A. V. Barzykin, Phys. Rev. B 0163-1829 10.1103/PhysRevB.58.14171 58, 14171 (1998).
-
(1998)
Phys. Rev. B
, vol.58
, pp. 14171
-
-
Barzykin, A.V.1
-
44
-
-
0033170464
-
-
1090-7807 10.1006/jmre.1999.1778
-
A. V. Barzykin, J. Magn. Reson. 1090-7807 10.1006/jmre.1999.1778 139, 342 (1999).
-
(1999)
J. Magn. Reson.
, vol.139
, pp. 342
-
-
Barzykin, A.V.1
-
45
-
-
33947305690
-
-
This dimensionless parameter q can be thought of as an extension of the classical q value in a PGSE experiment, (2π) -1 γgδ, to nonlinear and non-narrow magnetic fields.
-
This dimensionless parameter q can be thought of as an extension of the classical q value in a PGSE experiment, (2π) -1 γgδ, to nonlinear and non-narrow magnetic fields.
-
-
-
-
46
-
-
33947325088
-
-
A more general Fourier (or mixed, or relaxing) boundary condition was considered in Ref. 15.
-
A more general Fourier (or mixed, or relaxing) boundary condition was considered in Ref..
-
-
-
-
47
-
-
33947323990
-
-
We stress that this random walk is merely a useful analogy to manipulate the Kronecker symbols in (24). It has no relation to the physical diffusion of spins in a slab geometry.
-
We stress that this random walk is merely a useful analogy to manipulate the Kronecker symbols in. It has no relation to the physical diffusion of spins in a slab geometry.
-
-
-
-
48
-
-
33947305360
-
-
The efficiency and accuracy of this computation will, of course, depend on the temporal profile f (t). For instance, if the content of f (t) is too narrow (as in the case of Stejskal-Tanner narrow pulses), one needs to use specific distributions of moments t1, , tn to perform trials.
-
The efficiency and accuracy of this computation will, of course, depend on the temporal profile f (t). For instance, if the content of f (t) is too narrow (as in the case of Stejskal-Tanner narrow pulses), one needs to use specific distributions of moments t1, tn to perform trials.
-
-
-
-
49
-
-
33947324781
-
-
The integral representation (38) for 1 can be rigorously derived from its definition (18). In contrast, this definition is in general not applicable to with <1. The coefficient 32 is formally defined by series expansion (37) of the second moment as p→0; see Ref. 15 for details.
-
The integral representation for 1 can be rigorously derived from its definition. In contrast, this definition is in general not applicable to with <1. The coefficient 32 is formally defined by series expansion of the second moment as p→0; see Ref. for details.
-
-
-
-
50
-
-
33947312920
-
-
The numerical implementation of the MCF approach to compute the signal attenuation in a linear magnetic field gradient was thoroughly discussed in Ref. 15. In this particular case, the MCF numerical technique is similar to the stepwise gradient approximation by Barzykin (Refs. 43 44).
-
The numerical implementation of the MCF approach to compute the signal attenuation in a linear magnetic field gradient was thoroughly discussed in Ref.. In this particular case, the MCF numerical technique is similar to the stepwise gradient approximation by Barzykin (Refs.).
-
-
-
-
51
-
-
33947329259
-
-
Although difficult to demonstrate rigorously, it is natural to assume that the next significant contribution after the second moment would be given by the fourth moment (n=2).
-
Although difficult to demonstrate rigorously, it is natural to assume that the next significant contribution after the second moment would be given by the fourth moment (n=2).
-
-
-
-
52
-
-
33947312404
-
-
We stress again that this non-analytic dependence of the signal on q should be understood as asymptotic behavior.
-
We stress again that this non-analytic dependence of the signal on q should be understood as asymptotic behavior.
-
-
-
-
53
-
-
33947306029
-
-
To better fit the signal as a function of q, we slightly modified the relation (48) by introducing an adjustable coefficient a0, Eex [- a0 (π 2) (pq) 12]. We took a0 equal to 1.13, 1.00, and 0.60 for p=0.1, p=1, and p=10, respectively. This minor modification may be related to some -dependent corrections to the asymptotic behavior (48).
-
To better fit the signal as a function of q, we slightly modified the relation by introducing an adjustable coefficient a0, Eexp [- a0 (π 2) (pq) 12]. We took a0 equal to 1.13, 1.00, and 0.60 for p=0.1, p=1, and p=10, respectively. This minor modification may be related to some p -dependent corrections to the asymptotic behavior.
-
-
-
|