메뉴 건너뛰기




Volumn 14, Issue 2, 2007, Pages 183-196

Identification of characteristic length of microstructure for second order continuum multiscale model by Bayesian neural networks

Author keywords

Bayesian neural network (BNN); Computational homogenization (CH); Finite element method (FEM); Micro and macrolevels; Principal component analysis (PCA); Probability density function (pdf); Representative volume element (RVE); Second order continuum

Indexed keywords

BAYESIAN NETWORKS; FINITE ELEMENT METHOD; HOMOGENIZATION METHOD; PRINCIPAL COMPONENT ANALYSIS; PROBABILITY DENSITY FUNCTION; STRUCTURAL ANALYSIS;

EID: 33947258361     PISSN: 1232308X     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (5)

References (14)
  • 3
    • 0037414352 scopus 로고    scopus 로고
    • Determination of plastic properties of metals by instrumented indentation using different sharp indentors
    • J.L. Bucaille, S. Stauss, E. Felder, J. Michler. Determination of plastic properties of metals by instrumented indentation using different sharp indentors. Acta Materialia, 51: 1663-1678, 2003.
    • (2003) Acta Materialia , vol.51 , pp. 1663-1678
    • Bucaille, J.L.1    Stauss, S.2    Felder, E.3    Michler, J.4
  • 4
    • 0043127126 scopus 로고    scopus 로고
    • A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua
    • F. Feyel. A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua. Comput. Methods Appl. Mech. Engrg., 192: 3233-3244, 2003.
    • (2003) Comput. Methods Appl. Mech. Engrg , vol.192 , pp. 3233-3244
    • Feyel, F.1
  • 7
    • 33947233860 scopus 로고    scopus 로고
    • Thin layer shear and second order homogenization method
    • Ł. Kaczmarczyk. Thin layer shear and second order homogenization method. Comput. Assisted Mech. Engrg. Sci., 13: 537-546, 2006.
    • (2006) Comput. Assisted Mech. Engrg. Sci , vol.13 , pp. 537-546
    • Kaczmarczyk, L.1
  • 9
    • 0035312886 scopus 로고    scopus 로고
    • Bayesian approach for neural networks
    • J. Lampinen, A. Vehtari. Bayesian approach for neural networks. Neural Networks, 14(3): 7-24, 2001.
    • (2001) Neural Networks , vol.14 , Issue.3 , pp. 7-24
    • Lampinen, J.1    Vehtari, A.2
  • 10
    • 35048822888 scopus 로고    scopus 로고
    • M.E. Tipping. Advanced Lectures on Machine Learning, chapter 'Bayesian inference: an introduction to principles and practice in machine learning', pp. 41-62. Springer, 2004.
    • M.E. Tipping. Advanced Lectures on Machine Learning, chapter 'Bayesian inference: an introduction to principles and practice in machine learning', pp. 41-62. Springer, 2004.
  • 12
    • 0032710222 scopus 로고    scopus 로고
    • Finite element for materials with strain gradient effects
    • J.Y. Shu, W.E. King, N.A. Fleck. Finite element for materials with strain gradient effects. Int. J. Num. Meth. Engrg., 44: 373-391, 1999.
    • (1999) Int. J. Num. Meth. Engrg , vol.44 , pp. 373-391
    • Shu, J.Y.1    King, W.E.2    Fleck, N.A.3
  • 14
    • 85053910465 scopus 로고    scopus 로고
    • Neural networks in the identification analysis of structural mechanics problems
    • Z. Mróz, G. Stavroulakis, eds, CISM Lecture Notes No. 469, Chapter 7, pp, Springer, Wien-New York
    • Z. Waszczyszyn, L. Ziemiański. Neural networks in the identification analysis of structural mechanics problems. In: Z. Mróz, G. Stavroulakis, eds., Parameter Identification of Materials and Structures, CISM Lecture Notes No. 469, Chapter 7, pp. 265-340. Springer, Wien-New York, 2005.
    • (2005) Parameter Identification of Materials and Structures , pp. 265-340
    • Waszczyszyn, Z.1    Ziemiański, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.