-
1
-
-
19844372629
-
-
D. Sievenpiper, L. Zhang, R. Broas, N.G. Alexopolous, E. Yablonovitch, IEEE Trans. Microw. Theory Technol. 47, 2059 (1999)
-
(1999)
IEEE Trans. Microw. Theory Technol
, vol.47
, pp. 2059
-
-
Sievenpiper, D.1
Zhang, L.2
Broas, R.3
Alexopolous, N.G.4
Yablonovitch, E.5
-
3
-
-
0742287126
-
-
C.R. Simovski, P. de Maagt, S.A. Tretyakov, M. Paquary, A.A. Sochava, Electron. Lett. 40, 92 (2004)
-
(2004)
Electron. Lett
, vol.40
, pp. 92
-
-
Simovski, C.R.1
de Maagt, P.2
Tretyakov, S.A.3
Paquary, M.4
Sochava, A.A.5
-
5
-
-
0000888660
-
-
R. Coccioli, F.R. Yang, K.P. Ma, T. Itoh, IEEE Trans. Microw. Theory Technol. 47, 2123 (1999)
-
(1999)
IEEE Trans. Microw. Theory Technol
, vol.47
, pp. 2123
-
-
Coccioli, R.1
Yang, F.R.2
Ma, K.P.3
Itoh, T.4
-
6
-
-
0242413200
-
-
L. Zhou, W.J. Wen, C.T. Chan, P. Sheng, Appl. Phys. Lett. 83, 3257 (2003)
-
(2003)
Appl. Phys. Lett
, vol.83
, pp. 3257
-
-
Zhou, L.1
Wen, W.J.2
Chan, C.T.3
Sheng, P.4
-
7
-
-
2042502358
-
-
J. McVay, N. Engheta, A. Hoorfar, IEEE Microw. Wirel. Comp. Lett. 14, 130 (2004)
-
J. McVay, N. Engheta, A. Hoorfar, IEEE Microw. Wirel. Comp. Lett. 14, 130 (2004)
-
-
-
-
8
-
-
13244295507
-
-
D.J. Kern, D.H. Werner, A. Monorchio, L. Lanuzza, M.J. Wilhelm, IEEE Trans. Antennas Propag. 53, 8 (2005)
-
(2005)
IEEE Trans. Antennas Propag
, vol.53
, pp. 8
-
-
Kern, D.J.1
Werner, D.H.2
Monorchio, A.3
Lanuzza, L.4
Wilhelm, M.J.5
-
11
-
-
33748507362
-
-
H.Q. Li, J.M. Hao, L. Zhou, Z.Y. Wei, L.K. Gong, H. Chen, C.T. Chan, Appl. Phys. Lett. 89, 104 101 (2006)
-
(2006)
Appl. Phys. Lett
, vol.89
, pp. 104-101
-
-
Li, H.Q.1
Hao, J.M.2
Zhou, L.3
Wei, Z.Y.4
Gong, L.K.5
Chen, H.6
Chan, C.T.7
-
12
-
-
17944371826
-
-
L. Zhou, H.Q. Li, Y.Q. Qin, Z.Y. Wei, C.T. Chan, Appl. Phys. Lett. 86, 101 101 (2005)
-
(2005)
Appl. Phys. Lett
, vol.86
, pp. 101-101
-
-
Zhou, L.1
Li, H.Q.2
Qin, Y.Q.3
Wei, Z.Y.4
Chan, C.T.5
-
15
-
-
33947261647
-
-
Simulations were performed using the package CONCERTO 4.0, developed by Vector Fields Ltd, England (2004). In our simulations, a basic cell sized 0.5 mm × 0.5 mm × 1 mm is adopted to discretize the space. Finer sub-meshes were adopted in space regions where strong inhomogeneity exists
-
Simulations were performed using the package CONCERTO 4.0, developed by Vector Fields Ltd, England (2004). In our simulations, a basic cell sized 0.5 mm × 0.5 mm × 1 mm is adopted to discretize the space. Finer sub-meshes were adopted in space regions where strong inhomogeneity exists
-
-
-
-
16
-
-
33947282812
-
-
For planar patterns without x-y symmetry like that in [6, we should set μ2xx ≠ μ2yy
-
yy
-
-
-
-
17
-
-
33947240918
-
-
In both TE and TM excitation cases, we find that the in-plane electric dipoles are induced on the metallic patterns, which further couple to the metal sheet to form magnetic responses
-
In both TE and TM excitation cases, we find that the in-plane electric dipoles are induced on the metallic patterns, which further couple to the metal sheet to form magnetic responses
-
-
-
-
18
-
-
33947232782
-
-
We find that the Bragg scatterings introduced by the periodic planar metallic patterns are not strong enough to open the gap
-
We find that the Bragg scatterings introduced by the periodic planar metallic patterns are not strong enough to open the gap
-
-
-
|