-
2
-
-
33645364955
-
-
For a comprehensive review of macrolactonizations in the synthesis of natural products, see
-
For a comprehensive review of macrolactonizations in the synthesis of natural products, see: Parenty, A.; Moreau, X.; Campagne, J.-M. Chem. Rev. 2006, 106, 911-939.
-
(2006)
Chem. Rev
, vol.106
, pp. 911-939
-
-
Parenty, A.1
Moreau, X.2
Campagne, J.-M.3
-
3
-
-
27744480366
-
-
(a) Shiina, I.; Hashizume, M.; Yamai, Y.; Oshiumi, H.; Shimazaki, T.; Takasuna, Y.; Ibuka, R. Chem. Eur. J. 2005, 11, 6601-6608.
-
(2005)
Chem. Eur. J
, vol.11
, pp. 6601-6608
-
-
Shiina, I.1
Hashizume, M.2
Yamai, Y.3
Oshiumi, H.4
Shimazaki, T.5
Takasuna, Y.6
Ibuka, R.7
-
4
-
-
0028085467
-
-
(b) Busek, K. R.; Sato, N.; Jeong, Y. J. Am. Chem. Soc. 1994, 116, 5511-5512.
-
(1994)
J. Am. Chem. Soc
, vol.116
, pp. 5511-5512
-
-
Busek, K.R.1
Sato, N.2
Jeong, Y.3
-
5
-
-
1242297017
-
-
For alternative approaches to the synthesis of medium ring lactones, see: a
-
For alternative approaches to the synthesis of medium ring lactones, see: (a) O'Sullivan, P. T.; Buhr, W.; Fuhry, M. A. M.; Harrison, J. R.; Davies, J. E.; Feeder, N.; Marshall, D. R.; Burton, J. W.; Holmes, A. B. J. Am. Chem. Soc. 2004, 126, 2194-2207.
-
(2004)
J. Am. Chem. Soc
, vol.126
, pp. 2194-2207
-
-
O'Sullivan, P.T.1
Buhr, W.2
Fuhry, M.A.M.3
Harrison, J.R.4
Davies, J.E.5
Feeder, N.6
Marshall, D.R.7
Burton, J.W.8
Holmes, A.B.9
-
7
-
-
0032726845
-
-
(c) Ohi, H.; Inoue, S.; Iwabuchi, Y.; Irie, H.; Hatakeyama, S. Synlett 1999, 1757-1759.
-
(1999)
Synlett
, pp. 1757-1759
-
-
Ohi, H.1
Inoue, S.2
Iwabuchi, Y.3
Irie, H.4
Hatakeyama, S.5
-
8
-
-
0000342583
-
-
(d) Inoue, S.; Iwabuchi, Y.; Irie, H.; Hatakeyama, S. Synlett 1998, 735-736.
-
(1998)
Synlett
, pp. 735-736
-
-
Inoue, S.1
Iwabuchi, Y.2
Irie, H.3
Hatakeyama, S.4
-
9
-
-
0032542392
-
-
(e) Bermejo, A.; Tormo, J. R.; Cabedo, N.; Estornell, E.; Figadere, B.; Cortes, D. J. Med. Chem. 1998, 41, 5158-5166.
-
(1998)
J. Med. Chem
, vol.41
, pp. 5158-5166
-
-
Bermejo, A.1
Tormo, J.R.2
Cabedo, N.3
Estornell, E.4
Figadere, B.5
Cortes, D.6
-
10
-
-
0001607152
-
-
(f) Tapiolas, D. M.; Roman, M.; Fenical, W.; Stout, T. J.; Clardy, J. J. Am. Chem. Soc. 1991, 113, 4682-4683.
-
(1991)
J. Am. Chem. Soc
, vol.113
, pp. 4682-4683
-
-
Tapiolas, D.M.1
Roman, M.2
Fenical, W.3
Stout, T.J.4
Clardy, J.5
-
12
-
-
33847772917
-
-
RCM approaches to the synthesis of 8-membered ring lactones: (a) Mohapatra, D. K.; Yellol, G. S. Arkivoc 2003 (ix), 21-33.
-
RCM approaches to the synthesis of 8-membered ring lactones: (a) Mohapatra, D. K.; Yellol, G. S. Arkivoc 2003 (ix), 21-33.
-
-
-
-
13
-
-
0037033194
-
-
(b) Buszek, K. R.; Sato, N.; Jeong, Y. Tetrahedron Lett. 2002, 43, 181-184.
-
(2002)
Tetrahedron Lett
, vol.43
, pp. 181-184
-
-
Buszek, K.R.1
Sato, N.2
Jeong, Y.3
-
14
-
-
0034685462
-
-
(c) Chatterjee, A. K.; Morgan, J. P.; Scholl, M.; Grubbs, R. H. J. Am. Chem. Soc. 2000, 122, 3783-3784.
-
(2000)
J. Am. Chem. Soc
, vol.122
, pp. 3783-3784
-
-
Chatterjee, A.K.1
Morgan, J.P.2
Scholl, M.3
Grubbs, R.H.4
-
15
-
-
0037159780
-
-
RCM approaches to the synthesis of 9-membered ring lactones: (a) Takahashi, T.; Watanabe, H.; Kitahara, T. Heterocycles 2002, 58, 99-104.
-
RCM approaches to the synthesis of 9-membered ring lactones: (a) Takahashi, T.; Watanabe, H.; Kitahara, T. Heterocycles 2002, 58, 99-104.
-
-
-
-
16
-
-
0035847196
-
-
(b) Baba, Y.; Sana, G.; Nakao, S.; Iwata, C.; Tanaka, T.; Ibuka, T.; Ohishi, H.; Takemoto, Y. J. Org. Chem. 2001, 66, 81-88.
-
(2001)
J. Org. Chem
, vol.66
, pp. 81-88
-
-
Baba, Y.1
Sana, G.2
Nakao, S.3
Iwata, C.4
Tanaka, T.5
Ibuka, T.6
Ohishi, H.7
Takemoto, Y.8
-
17
-
-
13844272597
-
-
RCM approaches to the synthesis of 10-membered ring lactones: (a) Kangani, C. O.; Brulckner, A. M.; Curran, D. P. Org. Lett. 2005, 7, 379-382.
-
RCM approaches to the synthesis of 10-membered ring lactones: (a) Kangani, C. O.; Brulckner, A. M.; Curran, D. P. Org. Lett. 2005, 7, 379-382.
-
-
-
-
18
-
-
1642502980
-
-
(b) Davoli, P.; Spaggiari, A.; Castagnetti, L.; Prati, F. Org. Biomol. Chem. 2004, 2, 28-47.
-
(2004)
Org. Biomol. Chem
, vol.2
, pp. 28-47
-
-
Davoli, P.1
Spaggiari, A.2
Castagnetti, L.3
Prati, F.4
-
19
-
-
0037453667
-
-
(c) Anand, R. V.; Baktharaman, S.; Singh, V. K. J. Org. Chem. 2003, 68, 3356-3359.
-
(2003)
J. Org. Chem
, vol.68
, pp. 3356-3359
-
-
Anand, R.V.1
Baktharaman, S.2
Singh, V.K.3
-
20
-
-
0037474667
-
-
(d) Gurjar, M. K.; Nagaprasad, R.; Ramana, C. V. Tetrahedron Lett. 2003, 44, 2873-2875.
-
(2003)
Tetrahedron Lett
, vol.44
, pp. 2873-2875
-
-
Gurjar, M.K.1
Nagaprasad, R.2
Ramana, C.V.3
-
21
-
-
0038391437
-
-
(e) Diez, E.; Dixon, D. J.; Ley, S. V.; Polara, A.; Rodriguez, F. Synlett 2003, 1186-1188.
-
(2003)
Synlett
, pp. 1186-1188
-
-
Diez, E.1
Dixon, D.J.2
Ley, S.V.3
Polara, A.4
Rodriguez, F.5
-
23
-
-
0037134804
-
-
(g) Fürstner, A.; Radkowski, K.; Wirtz, C.; Goddard, R.; Lehmann, C. W.; Mynott, R. J. Am. Chem. Soc. 2002, 124, 7061-7069.
-
(2002)
J. Am. Chem. Soc
, vol.124
, pp. 7061-7069
-
-
Fürstner, A.1
Radkowski, K.2
Wirtz, C.3
Goddard, R.4
Lehmann, C.W.5
Mynott, R.6
-
24
-
-
0343760721
-
-
Bennett, F.; Knight, D. W.; Fenton, G. J. Chem. Soc., Perkin Trans. 1 1991, 133-140.
-
(1991)
J. Chem. Soc., Perkin Trans. 1
, pp. 133-140
-
-
Bennett, F.1
Knight, D.W.2
Fenton, G.3
-
26
-
-
3543057490
-
-
A preformed Sm(III) catalyst was used to prevent any side reactions between the unsaturated aldehyde and Sm(II): Edmonds, D. J.; Johnston, D.; Procter, D. J. Chem. Rev. 2004, 104, 3371-3403.
-
A preformed Sm(III) catalyst was used to prevent any side reactions between the unsaturated aldehyde and Sm(II): Edmonds, D. J.; Johnston, D.; Procter, D. J. Chem. Rev. 2004, 104, 3371-3403.
-
-
-
-
28
-
-
0001855961
-
-
Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1996, 118, 100-110.
-
(1996)
J. Am. Chem. Soc
, vol.118
, pp. 100-110
-
-
Schwab, P.1
Grubbs, R.H.2
Ziller, J.W.3
-
29
-
-
0035799891
-
-
Ahn, Y. M.; Yang, K.; Georg, G. I. Org. Lett. 2001, 5, 1411-1413.
-
(2001)
Org. Lett
, vol.5
, pp. 1411-1413
-
-
Ahn, Y.M.1
Yang, K.2
Georg, G.I.3
-
30
-
-
33847783813
-
-
It was anticipated that the differential protection of fragments 14 and 15 would allow a facile deprotection of the precursor to β-hydroxy ketone 13, making 10b a more attractive target.
-
It was anticipated that the differential protection of fragments 14 and 15 would allow a facile deprotection of the precursor to β-hydroxy ketone 13, making 10b a more attractive target.
-
-
-
-
31
-
-
33748987881
-
-
Fanjul, S.; Hulme, A. N.; White, J. W. Org. Lett. 2006, 8, 4219-4222.
-
(2006)
Org. Lett
, vol.8
, pp. 4219-4222
-
-
Fanjul, S.1
Hulme, A.N.2
White, J.W.3
-
33
-
-
33847787719
-
-
Silyl protection of 20 was not required as no significant acyl migration was observed with this more sterically demanding substrate.
-
Silyl protection of 20 was not required as no significant acyl migration was observed with this more sterically demanding substrate.
-
-
-
-
34
-
-
0033598258
-
-
Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953-956.
-
(1999)
Org. Lett
, vol.1
, pp. 953-956
-
-
Scholl, M.1
Ding, S.2
Lee, C.W.3
Grubbs, R.H.4
-
35
-
-
0037756812
-
-
Zampella, A.; Sepe, V.; D'Orsi, R.; Bifulco, G.; Bassarello, C.; D'Auria, M. V. Tetrahedron: Asymmetry 2003, 14, 1787-1798.
-
(2003)
Tetrahedron: Asymmetry
, vol.14
, pp. 1787-1798
-
-
Zampella, A.1
Sepe, V.2
D'Orsi, R.3
Bifulco, G.4
Bassarello, C.5
D'Auria, M.V.6
-
36
-
-
0003405157
-
-
3rd ed, Georg Thieme Verlag: Stuttgart
-
Kocienski, P. J. Protecting Groups, 3rd ed.; Georg Thieme Verlag: Stuttgart, 2004.
-
(2004)
Protecting Groups
-
-
Kocienski, P.J.1
-
38
-
-
13444287979
-
-
(b) Fraunhoffer,-K. J.; Bachovchin, D. A.; White, M. C. Org. Lett. 2005, 7, 223-226.
-
(2005)
Org. Lett
, vol.7
, pp. 223-226
-
-
Fraunhoffer, K.J.1
Bachovchin, D.A.2
White, M.C.3
-
39
-
-
0037023406
-
-
Cossy, J.; Willis, C.; Bellosta, V.; BouzBouz, S. J. Org. Chem. 2002, 67, 1982-1992.
-
(2002)
J. Org. Chem
, vol.67
, pp. 1982-1992
-
-
Cossy, J.1
Willis, C.2
Bellosta, V.3
BouzBouz, S.4
-
40
-
-
33847770564
-
-
Presumably introduction of the C(4) allylic methyl group in 28 (which is absent in 20) renders the desired RCM relatively less favorable; hence, a shift from a 9:1 to 1:1 ratio of products occurs.
-
Presumably introduction of the C(4) allylic methyl group in 28 (which is absent in 20) renders the desired RCM relatively less favorable; hence, a shift from a 9:1 to 1:1 ratio of products occurs.
-
-
-
-
41
-
-
33847770113
-
-
The epoxide stereochemistry in 30 and 31 is assumed on the basis of literature precedent for epoxidation of the related lactones.
-
The epoxide stereochemistry in 30 and 31 is assumed on the basis of literature precedent for epoxidation of the related lactones.
-
-
-
|