-
1
-
-
0033148910
-
On exponential stability of nonlinear time-varying differential equations
-
D. Aeyeles and J. Peuteman, "On exponential stability of nonlinear time-varying differential equations", Automatica, 35, pp. 1091-1100, 1999.
-
(1999)
Automatica
, vol.35
, pp. 1091-1100
-
-
Aeyeles, D.1
Peuteman, J.2
-
3
-
-
0030194344
-
Stability analysis of dynamical neural networks
-
Y. Fang and T.G. Kincaid, "Stability analysis of dynamical neural networks", IEEE Trans. Neural Networks, 7, pp. 996-1006, 1996.
-
(1996)
IEEE Trans. Neural Networks
, vol.7
, pp. 996-1006
-
-
Fang, Y.1
Kincaid, T.G.2
-
4
-
-
5444239741
-
A new stability test for nonlinear non-autonomous systems
-
M.I. Gil', "A new stability test for nonlinear non-autonomous systems", Automatica, 40, pp. 2161-2165, 2004.
-
(2004)
Automatica
, vol.40
, pp. 2161-2165
-
-
Gil', M.I.1
-
5
-
-
27844496496
-
Stability of linear systems governed by second order vector differential equations
-
M.I. Gil', "Stability of linear systems governed by second order vector differential equations", Int. J. Contr., 78, pp. 534-536, 2005.
-
(2005)
Int. J. Contr
, vol.78
, pp. 534-536
-
-
Gil', M.I.1
-
6
-
-
2442543343
-
Stability and instability matrices for linear evolution variational inequalities
-
D. Goeleven and B. Brogliato, "Stability and instability matrices for linear evolution variational inequalities", IEEE Trans. Auto. Control, 49, pp. 521-534, 2004.
-
(2004)
IEEE Trans. Auto. Control
, vol.49
, pp. 521-534
-
-
Goeleven, D.1
Brogliato, B.2
-
8
-
-
0038273908
-
Torque-based control of whirling motion in a rotating electric machine under mechanical resonance
-
K. Inoue, S. Yamamoto, T. Ushio and T. Hikihara, "Torque-based control of whirling motion in a rotating electric machine under mechanical resonance", IEEE Trans, on Control Syst. Tech., 11, pp. 335-344, 2003.
-
(2003)
IEEE Trans, on Control Syst. Tech
, vol.11
, pp. 335-344
-
-
Inoue, K.1
Yamamoto, S.2
Ushio, T.3
Hikihara, T.4
-
9
-
-
14244251519
-
A stability condition for time-varying system represented by a couple of a second- and a first-order differential equations
-
Paradise Island, Bahamas
-
K. Inoue and T. Kato, "A stability condition for time-varying system represented by a couple of a second- and a first-order differential equations", 43rd IEEE Conference on Decision and Control, Dec. 14-17, Atlantis, Paradise Island, Bahamas, 2004.
-
(2004)
43rd IEEE Conference on Decision and Control, Dec. 14-17, Atlantis
-
-
Inoue, K.1
Kato, T.2
-
10
-
-
21144471916
-
Robust stability and diagonal Lyapunov functions
-
E. Kaszkurewicz and A. Bhaya, "Robust stability and diagonal Lyapunov functions", SIAM J. Matrix Analy. Appl., 14, pp. 508-520, 1993.
-
(1993)
SIAM J. Matrix Analy. Appl
, vol.14
, pp. 508-520
-
-
Kaszkurewicz, E.1
Bhaya, A.2
-
11
-
-
0036532895
-
Criteria for robust absolute stability of time-varying nonlinear continuous-time systems
-
D. Liu and A. Molchanov, "Criteria for robust absolute stability of time-varying nonlinear continuous-time systems", Automatica, 38, pp. 627-637, 2002.
-
(2002)
Automatica
, vol.38
, pp. 627-637
-
-
Liu, D.1
Molchanov, A.2
-
12
-
-
33244457608
-
On the stability and control of nonlinear dynamical systems via vector Lyapunov functions
-
S.G. Nersesov and W.M. Haddad, "On the stability and control of nonlinear dynamical systems via vector Lyapunov functions", IEEE Trans. Auto. Cunt., 51, pp. 203-215, 2006.
-
(2006)
IEEE Trans. Auto. Cunt
, vol.51
, pp. 203-215
-
-
Nersesov, S.G.1
Haddad, W.M.2
-
13
-
-
0003728020
-
-
Upper Saddle River. New Jersey: Prentice Hall
-
W.J. Rugh, Linear System Theory, Upper Saddle River. New Jersey: Prentice Hall, 1996.
-
(1996)
Linear System Theory
-
-
Rugh, W.J.1
-
14
-
-
0142234662
-
On Lyapunov stability of nonautonomous mechanical systems
-
H. Tasso and G.N. Throumoulopoulos, "On Lyapunov stability of nonautonomous mechanical systems", Phys. Lett. A, 271, pp. 413-418, 2000.
-
(2000)
Phys. Lett. A
, vol.271
, pp. 413-418
-
-
Tasso, H.1
Throumoulopoulos, G.N.2
-
15
-
-
0242333994
-
Exponential stability and solution bounds for systems with bounded nonlinearities
-
A. Zevin and M. Pinsky, "Exponential stability and solution bounds for systems with bounded nonlinearities", IEEE Trans. Auto. Control, 48, pp. 1799-1804, 2003.
-
(2003)
IEEE Trans. Auto. Control
, vol.48
, pp. 1799-1804
-
-
Zevin, A.1
Pinsky, M.2
|