메뉴 건너뛰기




Volumn 102, Issue 2-3, 2007, Pages 118-123

An empirical study on classification methods for alarms from a bug-finding static C analyzer

Author keywords

Abstract interpretation; Classification methods; Program correctness; Static analysis; Statistical post analysis

Indexed keywords

ALARM SYSTEMS; APPROXIMATION THEORY; CLASSIFICATION (OF INFORMATION); SEMANTICS; SUPPORT VECTOR MACHINES;

EID: 33847647240     PISSN: 00200190     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ipl.2006.11.004     Document Type: Article
Times cited : (24)

References (18)
  • 2
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer E., and Kohavi R. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning 36 (1998) 105-139
    • (1998) Machine Learning , vol.36 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 24 2 (1996) 123-140
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 4
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Machine Learning 45 1 (2001) 5-32
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 6
    • 85050550846 scopus 로고
    • Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints
    • P. Cousot, R. Cousot, Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints, in: Proceedings of ACM Symposium on Principles of Programming Languages, January 1977, pp. 238-252
    • (1977) Proceedings of ACM Symposium on Principles of Programming Languages, January , pp. 238-252
    • Cousot, P.1    Cousot, R.2
  • 9
    • 0345438685 scopus 로고    scopus 로고
    • ROC graphs: Notes and practical considerations for data mining researchers
    • Technical Report HPL-2003-4, HP Labs, 2003
    • T. Fawcett, ROC graphs: Notes and practical considerations for data mining researchers, Technical Report HPL-2003-4, HP Labs, 2003
    • Fawcett, T.1
  • 10
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: a gradient boosting machine
    • Friedman J.H. Greedy function approximation: a gradient boosting machine. Annals of Statistics 29 (2001) 1189-1232
    • (2001) Annals of Statistics , vol.29 , pp. 1189-1232
    • Friedman, J.H.1
  • 12
    • 33646050367 scopus 로고    scopus 로고
    • Taming false alarms from a domain-unaware C analyzer by a Bayesian statistical post analysis
    • SAS'05: 12th Annual International Static Analysis Symposium, Springer, Berlin
    • Jung Y., Kim J., Shin J., and Yi K. Taming false alarms from a domain-unaware C analyzer by a Bayesian statistical post analysis. SAS'05: 12th Annual International Static Analysis Symposium. Lecture Notes in Computer Science vol. 3672 (2005), Springer, Berlin 203-217
    • (2005) Lecture Notes in Computer Science , vol.3672 , pp. 203-217
    • Jung, Y.1    Kim, J.2    Shin, J.3    Yi, K.4
  • 13
    • 35248882461 scopus 로고    scopus 로고
    • Z-ranking: Using statistical analysis to counter the impact of static analysis approximations
    • SAS'03: Proceedings of the 10th Annual International Static Analysis Symposium. Cousot R. (Ed), Springer, Berlin
    • Kremenek T., and Engler D. Z-ranking: Using statistical analysis to counter the impact of static analysis approximations. In: Cousot R. (Ed). SAS'03: Proceedings of the 10th Annual International Static Analysis Symposium. Lecture Notes in Computer Science vol. 2694 (2003), Springer, Berlin 295-315
    • (2003) Lecture Notes in Computer Science , vol.2694 , pp. 295-315
    • Kremenek, T.1    Engler, D.2
  • 14
  • 15
    • 33846991416 scopus 로고    scopus 로고
    • An empirical comparison of three boosting algorithms on real data sets with artificial class noise
    • MCS 2003: 4th International Workshop on Multiple Classifier Systems, Springer, Berlin
    • McDonald R.A., Hand D.J., and Eckley I.A. An empirical comparison of three boosting algorithms on real data sets with artificial class noise. MCS 2003: 4th International Workshop on Multiple Classifier Systems. Lecture Notes in Computer Science vol. 2709 (2003), Springer, Berlin 35-44
    • (2003) Lecture Notes in Computer Science , vol.2709 , pp. 35-44
    • McDonald, R.A.1    Hand, D.J.2    Eckley, I.A.3
  • 18
    • 0141738784 scopus 로고    scopus 로고
    • Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data
    • Wu B., Abbott T., Fishman D., McMurray W., Mor G., Stone K., Ward D., Williams K., and Zhao H. Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data. Bioinformatics 19 (September 2003) 1636-1643
    • (2003) Bioinformatics , vol.19 , pp. 1636-1643
    • Wu, B.1    Abbott, T.2    Fishman, D.3    McMurray, W.4    Mor, G.5    Stone, K.6    Ward, D.7    Williams, K.8    Zhao, H.9


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.