-
1
-
-
0040521319
-
Triangulations intersect nicely
-
O. Aichholzer, F. Aurenhammer, S.-W. Chert, N. Katoh, M. Taschwer, G. Rote, and Y.-F. Xu. Triangulations intersect nicely. Discrete Comput. Geom., 16:339-359, 1996.
-
(1996)
Discrete Comput. Geom
, vol.16
, pp. 339-359
-
-
Aichholzer, O.1
Aurenhammer, F.2
Chert, S.-W.3
Katoh, N.4
Taschwer, M.5
Rote, G.6
Xu, Y.-F.7
-
2
-
-
84957552038
-
Proximity constraints and representable trees
-
R. Tamnssin and I. G. Tollis, editors, Springer- Vexlag
-
P. Bose, G. Di Battista, W. Lenhart, and G. Liotta. Proximity constraints and representable trees. In R. Tamnssin and I. G. Tollis, editors, Graph Drawing (Prec. GD '9J), volume 894 of Lecture Note# Comput. Sci., pages 340-351. Springer- Vexlag, 1995.
-
(1995)
Graph Drawing (Prec. GD '9J), Volume 894 of Lecture Note# Comput. Sci
, pp. 340-351
-
-
Bose, P.1
Di Battista, G.2
Lenhart, W.3
Liotta, G.4
-
3
-
-
0006886803
-
Characterizing proximity trees
-
(special issue on Graph Drawing, edited by G. Di Battista and IL Tamassia)
-
P. Bose, W. Lenhart, and G. Liotta. Characterizing proximity trees. Algorithmica, 16:83-110, 1996. (special issue on Graph Drawing, edited by G. Di Battista and IL Tamassia).
-
(1996)
Algorithmica
, vol.16
, pp. 83-110
-
-
Bose, P.1
Lenhart, W.2
Liotta, G.3
-
4
-
-
0029725197
-
Approaching the largest β-skeleton within a minimum weight triangulation
-
S.-W. Cheng and Y.-F. Xu. Approaching the largest β-skeleton within a minimum weight triangulation. In Proc. 12th Annu. ACM Spmpos. Comput. Geom., pages 196-203, 1996.
-
(1996)
Proc. 12Th Annu. ACM Spmpos. Comput. Geom
, pp. 196-203
-
-
Cheng, S.-W.1
Xu, Y.-F.2
-
5
-
-
84957547268
-
Proximity drawability: A survey
-
R. Tamassia and I. G. Tollis, editors, Springer-Verlag
-
G. Di Battista, W. Lenlaart, and G. Liotta. Proximity drawability: a survey. In R. Tamassia and I. G. Tollis, editors, Graph Drawing (Proe. GD '94), volume 894 of £eeture Notes Compnt. Sci., pages 328-339. Springer-Verlag, 1995.
-
(1995)
Graph Drawing (Proe. GD '94), Volume 894 of £eeture Notes Compnt. Sci
, pp. 328-339
-
-
Di Battista, G.1
Lenlaart, W.2
Liotta, G.3
-
6
-
-
84947911810
-
The strength of weak proximity
-
F. J. Brandenburg, editor, Springer-Verlng
-
G. Di Battista, G. Liotta, and S. H. Whitesides. The strength of weak proximity. In F. J. Brandenburg, editor, Graph Drawing (Proe. GD '95), volume 1027 of Lecture Notes Comput. Sci., pages 178-189. Springer-Verlng, 1996.
-
(1996)
Graph Drawing (Proe. GD '95), Volume 1027 of Lecture Notes Comput. Sci
, pp. 178-189
-
-
Di Battista, G.1
Liotta, G.2
Whitesides, S.H.3
-
10
-
-
0025387271
-
Realizability of Delaunay triangulations. Inform. Process
-
M. B. Dillencourt. Realizability of Delaunay triangulations. Inform. Process. Left., 33:283-287, 1990.
-
(1990)
Left.
, vol.33
, pp. 283-287
-
-
Dillencourt, M.B.1
-
11
-
-
0000134659
-
Toughness and Delaunay triangulations
-
M. B. Dillencourt. Toughness and Delaunay triangulations. Discrete Comlrst. Geom., 5:575-601, 1990.Springex-Vexlag, 1997.
-
(1990)
Discrete Comlrst. Geom
, vol.5
, pp. 575-601
-
-
Diuencourt, M.B.1
-
12
-
-
0001858266
-
Graph-theoretical conditions for inscribability and delaunay reauzability
-
M. B. DUlencourt and W. D. Smith. Graph-theoretical conditions for inscribability and Delaunay reaUzability. In Proc. 6th Canad. Conf. Comput. Geom., pages 287-292, 1994.
-
(1994)
Proc. 6Th Canad. Conf. Comput. Geom
, pp. 287-292
-
-
DUlencourt, M.B.1
Smith, W.D.2
-
13
-
-
0001859411
-
The realization problem for euclidean minimum spanning trees is np-hard
-
special issue on Graph Drawing, edited by G. Di Battista and R. Tamassia
-
P. Eades and S. Whitesides. The realization problem for Euclidean minimum spanning trees is NP-hard. Algorithmica, 16:60-82, 1996. (special issue on Graph Drawing, edited by G. Di Battista and R. Tamassia).
-
(1996)
Algorithmica
, vol.16
, pp. 60-82
-
-
Eades, P.1
Whitesides, S.2
-
15
-
-
0003136657
-
Computing a subgraph of the minimum weight triangulation
-
M. Keil Computing a subgraph of the minimum weight triangulation. Comput. Geom. Theory AppL, 4:13-26, 1994.
-
(1994)
Comput. Geom. Theory Appl
, vol.4
, pp. 13-26
-
-
Keil, M.1
-
16
-
-
0006938345
-
A note on delaunay and optimal triangulations
-
D. G. Kirkpatrick. A note on Delaunay and optimal triangulations. Inform. Process. Left., 10:127-128, 1980.
-
(1980)
Inform. Process. Left
, vol.10
, pp. 127-128
-
-
Kirkpatrick, D.G.1
-
17
-
-
0000513316
-
Drawing outerplanar minimum weight triangulations
-
W. Lenhart and G. Liotta. Drawing outerplanar minimum weight triangulations. Inform. Process. Lett., 6(12):253-260, 1996.
-
(1996)
Inform. Process. Lett
, vol.6
, Issue.12
, pp. 253-260
-
-
Lenhart, W.1
Liotta, G.2
-
18
-
-
84947911911
-
How to draw outerplanar minimum weight triangulations
-
F. J. Brandenburg, editor, Springer-Verlag
-
W. Lenhart and G. Liotta. How to draw outerplanar minimum weight triangulations. In F. J. Brandenburg, editor, Graph Drawing (Proc. GD '95), volume 1027 of Lecture Notes Comput. Sci., pages 373-384. Springer-Verlag, 1996.
-
(1996)
Graph Drawing (Proc. GD '95)
, pp. 373-384
-
-
Lenhart, W.1
Liotta, G.2
-
19
-
-
84957636121
-
Proximity drawings of outerplanar graphs
-
S. North, editor, Graph Drawing (Proc. GD '96), Springex-Vexlag
-
W. Lenhart and G. Liotta. Proximity drawings of outerplanar graphs. In S. North, editor, Graph Drawing (Proc. GD '96), volume 1190 of Lecture Notes Comput. Sci., pages 286-302. Springex-Vexlag, 1997.
-
(1997)
1190 of Lecture Notes Comput. Sci
, pp. 286-302
-
-
Lenhart, W.1
Liotta, G.2
-
21
-
-
0006892634
-
Tight lower bounds for minimum weight triangulation heuristics
-
C. Levcopoulos and D. Krznaric. Tight lower bounds for minimum weight triangulation heuristics. I, formation Processing Letters, (57):129-135, 1996.
-
(1996)
I, Formation Processing Letters
, Issue.57
, pp. 129-135
-
-
Levcopoulos, C.1
Krznaric, D.2
-
22
-
-
0000024829
-
A new heuristic for minimum weight triangulation
-
A. Lingas. A new heuristic for minimum weight triangulation. SIAM J. Algebraic Discrete Methods, 8(4):646-658, 1987.
-
(1987)
SIAM J. Algebraic Discrete Methods
, vol.8
, Issue.4
, pp. 646-658
-
-
Lingas, A.1
-
24
-
-
84957361252
-
Area requirement of Gabriel drawings
-
Springer-Vexlag
-
G. Liotta, R Tamassia, I. G. Tollis, and P. Vocca. Area requirement of Gabriel drawings. In Algorithms and Complexity (Proc. CIAC' 97), volume 955 of Lecture Notes Comput. Sci., pages 239-250. Springer-Vexlag, 1995.
-
(1995)
Algorithms and Complexity (Proc. CIAC' 97), Volume 955 of Lecture Notes Comput. Sci
, pp. 239-250
-
-
Liotta, G.1
Tamassia, R.2
Tollis, I.G.3
Vocca, P.4
-
25
-
-
0006929461
-
Maximal outerplanar gsaphs are relative neighborhood graphs
-
A. Lubiw and N. Sleumer. Maximal outerplanar gsaphs are relative neighborhood graphs. In Proc. 5th Canad. Conf. Comput. Geom., pages 198-203, 1993.
-
(1993)
Proc. 5Th Canad. Conf. Comput. Geom
, pp. 198-203
-
-
Lubiw, A.1
Sleumer, N.2
-
26
-
-
0026845826
-
Computing the minimum weight triangulation of a set of linearly ordered points
-
H. Metier and D. Rappaport. Computing the minimum weight triangulation of a set of linearly ordered points. Information Processing Letters, (42):35-38, 1992.
-
(1992)
Information Processing Letters
, Issue.42
, pp. 35-38
-
-
Metier, H.1
Rappaport, D.2
-
27
-
-
21144470704
-
Transitions in geometric minimum spanning trees
-
C. Monma and S. Suri. Transitions in geometric minimum spanning trees. Discrete Comput. Geom., 8:265-293, 1992
-
(1992)
Discrete Comput. Geom
, vol.8
, pp. 265-293
-
-
Monma, C.1
Suri, S.2
|