-
1
-
-
0021628110
-
On the average length of delaunay triangulations
-
R. C. Chang and R. C. T. Lee, On the average length of Delaunay triangulations, BIT, 24 (1984), pp. 269-273.
-
(1984)
BIT
, vol.24
, pp. 269-273
-
-
Chang, R.C.1
Lee, R.C.T.2
-
2
-
-
85032225490
-
Which triangulations approximate the complete graph
-
LNCS 401
-
G. Das and D. Joseph, Which triangulations approximate the complete graph, in Proc. Int. Symp. on Optimal Algorithms, LNCS 401 (1989), pp. 168-183.
-
(1989)
Proc. Int. Symp. on Optimal Algorithms
, pp. 168-183
-
-
Das, G.1
Joseph, D.2
-
3
-
-
0027929466
-
Fast greedy triangulation algorithms
-
M. T. Dickerson, R. L. S. Drysdale, S. A. McElfresh, and E. Welzl, Fast greedy triangulation algorithms, in Proc. 10th ACM Symp. on Comp. Geom. (1994), pp. 211-220.
-
(1994)
Proc. 10th ACM Symp. on Comp. Geom.
, pp. 211-220
-
-
Dickerson, M.T.1
Drysdale, R.L.S.2
McElfresh, S.A.3
Welzl, E.4
-
5
-
-
0028713169
-
New results for the minimum weight triangulation problem
-
L. Heath and S. Pemmaraju, New results for the minimum weight triangulation problem, Algorithmica, 12 (1994), pp. 533-552.
-
(1994)
Algorithmica
, vol.12
, pp. 533-552
-
-
Heath, L.1
Pemmaraju, S.2
-
6
-
-
0006938345
-
A note on delaunay and optimal triangulations
-
D. G. Kirkpatrick, A note on Delaunay and optimal triangulations, Inf. Proc. Letters, 10 (1980), pp. 127-128.
-
(1980)
Inf. Proc. Letters
, vol.10
, pp. 127-128
-
-
Kirkpatrick, D.G.1
-
7
-
-
0023367455
-
An Ω(√n) lower bound for the nonoptimality of the greedy triangulation
-
C. Levcopoulos, An Ω(√n) lower bound for the nonoptimality of the greedy triangulation, Inf. Proc. Letters, 25 (1987), pp. 247-251.
-
(1987)
Inf. Proc. Letters
, vol.25
, pp. 247-251
-
-
Levcopoulos, C.1
-
9
-
-
0039765986
-
The greedy triangulation can be computed from the delaunay in linear time
-
Lund U., Sweden
-
C. Levcopoulos and D. Krznaric, The greedy triangulation can be computed from the Delaunay in linear time, Tech. Report LU-CS-TR:94-136, Dep. of Comp. Sci., Lund U., Sweden, 1994.
-
(1994)
Tech. Report LU-CS-TR:94-136, Dep. of Comp. Sci.
-
-
Levcopoulos, C.1
Krznaric, D.2
-
10
-
-
85029995073
-
Quasi-greedy triangulations approximating the minimum weight triangulation (revised version)
-
Lund U., Sweden
-
C. Levcopoulos and D. Krznaric, Quasi-greedy triangulations approximating the minimum weight triangulation (revised version), Tech. Report LU-CS-TR:95-155, Dep. of Comp. Sci., Lund U., Sweden, 1995.
-
(1995)
Tech. Report LU-CS-TR:95-155, Dep. of Comp. Sci.
-
-
Levcopoulos, C.1
Krznaric, D.2
-
11
-
-
85031677794
-
Tight lower bounds for minimum weight triangulation heuristics
-
Lund U., Sweden
-
C. Levcopoulos and D. Krznaric, Tight lower bounds for minimum weight triangulation heuristics, Tech. Report LU-CS-TR:95-157, Dep. of Comp. Sci., Lund U., Sweden, 1995.
-
(1995)
Tech. Report LU-CS-TR:95-157, Dep. of Comp. Sci.
-
-
Levcopoulos, C.1
Krznaric, D.2
-
12
-
-
0023209499
-
On approximating behavior of the greedy triangulation for convex polygons
-
C. Levcopoulos and A. Lingas, On approximating behavior of the greedy triangulation for convex polygons, Algorithmica, 2 (1987), pp. 175-193.
-
(1987)
Algorithmica
, vol.2
, pp. 175-193
-
-
Levcopoulos, C.1
Lingas, A.2
-
13
-
-
0346410510
-
The greedy triangulation approximates the minimum weight triangulation and can be computed in linear time in the average case
-
Lund U., Sweden A preliminary version appeared in Proc. ICCI '91, LNCS 497
-
C. Levcopoulos and A. Lingas, The greedy triangulation approximates the minimum weight triangulation and can be computed in linear time in the average case, Tech. Report LU-CS-TR:92-105, Dep. of Comp. Sci., Lund U., Sweden, 1992. A preliminary version appeared in Proc. ICCI '91, LNCS 497.
-
(1992)
Tech. Report LU-CS-TR:92-105, Dep. of Comp. Sci.
-
-
Levcopoulos, C.1
Lingas, A.2
-
14
-
-
85031672211
-
G-sensitive triangulations approximate the minmax length triangulation
-
Lund U., Sweden A preliminary version appeared in Proc. FST-TCS '92, LNCS 652
-
C. Levcopoulos and A. Lingas, G-sensitive triangulations approximate the minmax length triangulation, Tech. Report LU-CS-TR:93-118, Dep. of Comp. Sci., Lund U., Sweden, 1993. A preliminary version appeared in Proc. FST-TCS '92, LNCS 652.
-
(1993)
Tech. Report LU-CS-TR:93-118, Dep. of Comp. Sci.
-
-
Levcopoulos, C.1
Lingas, A.2
-
15
-
-
0000024829
-
A new heuristic for the minimum weight triangulation
-
A. Lingas, A new heuristic for the minimum weight triangulation, SIAM J. on Algebraic and Disc. Methods, 8 (1987), pp. 646-658.
-
(1987)
SIAM J. on Algebraic and Disc. Methods
, vol.8
, pp. 646-658
-
-
Lingas, A.1
-
16
-
-
85052097933
-
On triangulations of a set of points in the plane
-
E. L. Lloyd, On triangulations of a set of points in the plane, in Proc. 18th FOCS (1977), pp. 228-240.
-
(1977)
Proc. 18th FOCS
, pp. 228-240
-
-
Lloyd, E.L.1
-
17
-
-
0001773747
-
Neither the greedy nor the delaunay triangulation of a planar point set approximates the optimal triangulation
-
G. K. Manacher and A. L. Zobrist, Neither the greedy nor the Delaunay triangulation of a planar point set approximates the optimal triangulation, Inf. Proc. Letters, 9 (1979), pp. 31-34.
-
(1979)
Inf. Proc. Letters
, vol.9
, pp. 31-34
-
-
Manacher, G.K.1
Zobrist, A.L.2
-
18
-
-
0000393305
-
A heuristic triangulation algorithm
-
D. A. Plaisted and J. Hong, A heuristic triangulation algorithm, J. of Algorithms, 8 (1987), pp. 405-437.
-
(1987)
J. of Algorithms
, vol.8
, pp. 405-437
-
-
Plaisted, D.A.1
Hong, J.2
-
21
-
-
0004487889
-
Compilation of data for computer-assisted relief cartography
-
J. C. Davis and M. J. McCullagh, eds Wiley
-
P. Yoeli, Compilation of data for computer-assisted relief cartography, in J. C. Davis and M. J. McCullagh, eds., Display and Analysis of Spatial Data, Wiley, 1975.
-
(1975)
Display and Analysis of Spatial Data
-
-
Yoeli, P.1
|