-
1
-
-
0001448373
-
Problème de Cauchy pour des systèmes hyperboliques semi linéaires
-
Bachelot A., Problème de Cauchy pour des systèmes hyperboliques semi linéaires. Ann. IHP (Anal. non lin.) 1 (1984), 453-478.
-
(1984)
Ann. IHP (Anal. Non Lin.)
, vol.1
, pp. 453-478
-
-
Bachelot, A.1
-
2
-
-
0001632973
-
Long range scattering for nonlinear Schrödinger and Hartree equations in space dimensions n ≥ 2
-
Ginibre J. and Ozawa T., Long range scattering for nonlinear Schrödinger and Hartree equations in space dimensions n ≥ 2. Commun. Math. Phys. 151 (1993), 619-645.
-
(1993)
Commun. Math. Phys
, vol.151
, pp. 619-645
-
-
Ginibre, J.1
Ozawa, T.2
-
3
-
-
0000555922
-
Scattering theory in the energy space for a class of nonlinear Schrödinger equations
-
Ginibre J. and Velo G., Scattering theory in the energy space for a class of nonlinear Schrödinger equations. J. Math. Pures Appl. 64 (1985), 363-401.
-
(1985)
J. Math. Pures Appl
, vol.64
, pp. 363-401
-
-
Ginibre, J.1
Velo, G.2
-
4
-
-
58149363006
-
Generalized Strichartz inequalities for the wave equation
-
Ginibre J. and Velo G., Generalized Strichartz inequalities for the wave equation. J. Funct. Anal. 133 (1995), 50-68.
-
(1995)
J. Funct. Anal
, vol.133
, pp. 50-68
-
-
Ginibre, J.1
Velo, G.2
-
5
-
-
0036433568
-
Long range scattering and modified wave operators for the Wave-Schrödinger system
-
Ginibre J. and Velo G., Long range scattering and modified wave operators for the Wave-Schrödinger system. Ann. H.P. 3 (2002), 537-612.
-
(2002)
Ann. H.P.
, vol.3
, pp. 537-612
-
-
Ginibre, J.1
Velo, G.2
-
6
-
-
0345356919
-
Long range scattering and modified wave operators for the Wave-Schrödinger system II
-
Ginibre J. and Velo G., Long range scattering and modified wave operators for the Wave-Schrödinger system II. Ann. H.P. 4 (2003), 973-999.
-
(2003)
Ann. H.P.
, vol.4
, pp. 973-999
-
-
Ginibre, J.1
Velo, G.2
-
7
-
-
0037901937
-
Long range scattering and modified wave operators for the Maxwell-Schrödinger system I. The case of vanishing asymptotic magnetic field
-
Ginibre J. and Velo G., Long range scattering and modified wave operators for the Maxwell-Schrödinger system I. The case of vanishing asymptotic magnetic field. Commun. Math. Phys. 236 (2003), 395-448.
-
(2003)
Commun. Math. Phys
, vol.236
, pp. 395-448
-
-
Ginibre, J.1
Velo, G.2
-
8
-
-
18144398224
-
Scattering theory for the Schrödinger equation in some external time dependent magnetic fields
-
Ginibre J. and Velo G., Scattering theory for the Schrödinger equation in some external time dependent magnetic fields. J. Differential Equations 215 (2005), 108-177.
-
(2005)
J. Differential Equations
, vol.215
, pp. 108-177
-
-
Ginibre, J.1
Velo, G.2
-
9
-
-
0001138601
-
Endpoint Strichartz estimates
-
Keel M. and Tao T., Endpoint Strichartz estimates. Amer. J. Math. 120 (1998), 955-980.
-
(1998)
Amer. J. Math
, vol.120
, pp. 955-980
-
-
Keel, M.1
Tao, T.2
-
10
-
-
0001366166
-
Long range scattering for nonlinear Schrödinger equations in one space dimension
-
Ozawa T., Long range scattering for nonlinear Schrödinger equations in one space dimension. Commun. Math. Phys. 139 (1991), 479-493.
-
(1991)
Commun. Math. Phys
, vol.139
, pp. 479-493
-
-
Ozawa, T.1
-
11
-
-
0011693978
-
Asymptotic behaviour of solutions for the coupled Klein-Gordon-Schrödinger equations, in Spectral and Scattering Theory and Applications
-
Ozawa T. and Tsutsumi Y., Asymptotic behaviour of solutions for the coupled Klein-Gordon-Schrödinger equations, in Spectral and Scattering Theory and Applications. Adv. Stud. in Pure Math., Jap. Math. Soc. 23 (1994), 295-305.
-
(1994)
Adv. Stud. In Pure Math., Jap. Math. Soc
, vol.23
, pp. 295-305
-
-
Ozawa, T.1
Tsutsumi, Y.2
-
12
-
-
85016690022
-
Wave operators for the coupled Klein-Gordon-Schrödinger equations in two space dimensions
-
Shimomura A., Wave operators for the coupled Klein-Gordon-Schrödinger equations in two space dimensions. Funkcial. Ekvac. 47 (2004), 63-82.
-
(2004)
Funkcial. Ekvac
, vol.47
, pp. 63-82
-
-
Shimomura, A.1
-
13
-
-
12144251484
-
Scattering theory for the coupled Klein-Gordon-Schrödinger equations in two space dimensions
-
Shimomura A., Scattering theory for the coupled Klein-Gordon-Schrödinger equations in two space dimensions. J. Math. Sci. Univ. Tokyo, 10 (2003), 661-685.
-
(2003)
J. Math. Sci. Univ. Tokyo
, vol.10
, pp. 661-685
-
-
Shimomura, A.1
-
14
-
-
33747732358
-
Scattering theory for the coupled Klein-Gordon-Schrödinger equations in two space dimensions II
-
Shimomura A., Scattering theory for the coupled Klein-Gordon-Schrödinger equations in two space dimensions II. Hokkaido Math. J. 34 (2005), 405-433.
-
(2005)
Hokkaido Math. J
, vol.34
, pp. 405-433
-
-
Shimomura, A.1
-
15
-
-
0346913342
-
Modified wave operators for the coupled Wave-Schrödinger equations in three space dimensions
-
Shimomura A., Modified wave operators for the coupled Wave-Schrödinger equations in three space dimensions. Disc. Cont. Dyn. Syst. 9 (2003), 1571-1586.
-
(2003)
Disc. Cont. Dyn. Syst
, vol.9
, pp. 1571-1586
-
-
Shimomura, A.1
-
16
-
-
0344197672
-
Modified wave operators for Maxwell-Schrödinger equations in three space dimensions
-
Shimomura A., Modified wave operators for Maxwell-Schrödinger equations in three space dimensions. Ann. H.P. 4 (2003), 661-683.
-
(2003)
Ann. H.P.
, vol.4
, pp. 661-683
-
-
Shimomura, A.1
-
17
-
-
0003353148
-
Non linear Wave equations
-
Amer. Math. Soc. Providence
-
Strauss W., Non linear Wave equations. CMBS Lecture Notes 73, Amer. Math. Soc. Providence 1989.
-
(1989)
CMBS Lecture Notes
, vol.73
-
-
Strauss, W.1
-
18
-
-
21144470926
-
Global existence and asymptotic behaviour for the Maxwell-Schrödinger system in three space dimensions
-
Tsutsumi Y., Global existence and asymptotic behaviour for the Maxwell-Schrödinger system in three space dimensions. Commun. Math. Phys. 151 (1993), 543-576.
-
(1993)
Commun. Math. Phys
, vol.151
, pp. 543-576
-
-
Tsutsumi, Y.1
-
19
-
-
0000483491
-
Existence of solutions for Schrödinger evolution equations
-
Yajima K., Existence of solutions for Schrödinger evolution equations. Commun. Math. Phys. 110 (1987), 415-426.
-
(1987)
Commun. Math. Phys
, vol.110
, pp. 415-426
-
-
Yajima, K.1
|