메뉴 건너뛰기




Volumn 236, Issue 3, 2003, Pages 395-448

Long range scattering and modified wave operators for the Maxwell-Schr̈dinger system I. The case of vanishing asymptotic magnetic field

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0037901937     PISSN: 00103616     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00220-003-0808-6     Document Type: Article
Times cited : (27)

References (19)
  • 2
    • 0001632973 scopus 로고
    • Long range scattering for nonlinear Schrödinger and Hartree equations in space dimension n ≥2
    • Ginibre, J., Ozawa, T.: Long range scattering for nonlinear Schrödinger and Hartree equations in space dimension n ≥2. Commun. Math. Phys. 151, 619-645 (1993)
    • (1993) Commun. Math. Phys. , vol.151 , pp. 619-645
    • Ginibre, J.1    Ozawa, T.2
  • 3
    • 0041153741 scopus 로고    scopus 로고
    • Long range scattering and modified wave operators for some Hartree type equations I
    • Ginibre, J., Velo, G.: Long range scattering and modified wave operators for some Hartree type equations I. Rev. Math. Phys. 12, 361-429 (2000)
    • (2000) Rev. Math. Phys. , vol.12 , pp. 361-429
    • Ginibre, J.1    Velo, G.2
  • 4
    • 0034356173 scopus 로고    scopus 로고
    • Long range scattering and modified wave operators for some Hartree type equations II
    • Ginibre, J., Velo, G.: Long range scattering and modified wave operators for some Hartree type equations II. Ann. H. P. 1, 753-800 (2000)
    • (2000) Ann. H. P. , vol.1 , pp. 753-800
    • Ginibre, J.1    Velo, G.2
  • 5
    • 0035922219 scopus 로고    scopus 로고
    • Long range scattering and modified wave operators for some Hartree type equations III, Gevrey spaces and low dimensions
    • Ginibre, J., Velo, G.: Long range scattering and modified wave operators for some Hartree type equations III, Gevrey spaces and low dimensions. J. Diff. Eq. 175, 415-501 (2001)
    • (2001) J. Diff. Eq. , vol.175 , pp. 415-501
    • Ginibre, J.1    Velo, G.2
  • 6
    • 0036433568 scopus 로고    scopus 로고
    • Long range scattering and modified wave operators for the Wave-Schrödinger system
    • Ginibre, J., Velo, G.: Long range scattering and modified wave operators for the Wave-Schrödinger system. Ann. H. P. 3, 537-612 (2002)
    • (2002) Ann. H. P. , vol.3 , pp. 537-612
    • Ginibre, J.1    Velo, G.2
  • 7
    • 21844524767 scopus 로고
    • Global finite energy solutions of the Maxwell-Schrödinger system
    • Guo, Y., Nakamitsu, K., Strauss, W.: Global finite energy solutions of the Maxwell-Schrödinger system. Commun, Math. Phys. 170, 181-196 (1995)
    • (1995) Commun, Math. Phys. , vol.170 , pp. 181-196
    • Guo, Y.1    Nakamitsu, K.2    Strauss, W.3
  • 9
    • 0002121786 scopus 로고    scopus 로고
    • Remarks on scattering theory and large time asymptotics of solutions to Hartree type equations with a long range potential
    • Hayashi, N., Naumkin, P.I.: Remarks on scattering theory and large time asymptotics of solutions to Hartree type equations with a long range potential. SUT J. of Math. 34, 13-24 (1998)
    • (1998) SUT J. of Math. , vol.34 , pp. 13-24
    • Hayashi, N.1    Naumkin, P.I.2
  • 10
    • 0000872655 scopus 로고
    • Modified wave operators for the derivative nonlinear Schrödinger equation
    • Hayashi, N., Ozawa, T.: Modified wave operators for the derivative nonlinear Schrödinger equation. Math. Ann. 298, 557-576 (1994)
    • (1994) Math. Ann. , vol.298 , pp. 557-576
    • Hayashi, N.1    Ozawa, T.2
  • 12
    • 84990617895 scopus 로고
    • Commutator estimates and the Euler and Navier-Stokes equations
    • Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier-Stokes equations. Commun. Pure Appl. Math. 41, 891-907 (1988)
    • (1988) Commun. Pure Appl. Math. , vol.41 , pp. 891-907
    • Kato, T.1    Ponce, G.2
  • 13
    • 0001020698 scopus 로고
    • The initial value problem for a class of nonlinear dispersive equations
    • Functional-Analytic Methods for Partial Differential Equations.
    • Kenig, C., Ponce, G., Vega, L.: The initial value problem for a class of nonlinear dispersive equations. In: Functional-Analytic Methods for Partial Differential Equations., Lect. Notes Math. 1450, 1990, pp.141-156
    • (1990) Lect. Notes Math. , vol.1450 , pp. 141-156
    • Kenig, C.1    Ponce, G.2    Vega, L.3
  • 14
    • 0038717774 scopus 로고
    • The Cauchy problem for the coupled Maxwell-Schrödinger equations
    • Nakamitsu, K., Tsutsumi, M.: The Cauchy problem for the coupled Maxwell-Schrödinger equations. J. Math. Phys. 27, 211-216 (1986)
    • (1986) J. Math. Phys. , vol.27 , pp. 211-216
    • Nakamitsu, K.1    Tsutsumi, M.2
  • 15
    • 0012711089 scopus 로고    scopus 로고
    • Modified wave operators for the Hartree equation with data, image and convergence in the same space
    • In press
    • Nakanishi, K.: Modified wave operators for the Hartree equation with data, image and convergence in the same space. Commun. Pure Appl. Anal. In press
    • Commun. Pure Appl. Anal.
    • Nakanishi, K.1
  • 16
    • 0036435214 scopus 로고    scopus 로고
    • Modified wave operators for the Hartree equation with data, image and convergence in the same space II
    • Nakanishi, K.: Modified wave operators for the Hartree equation with data, image and convergence in the same space II. Ann. H. P. 3, 503-535 (2002)
    • (2002) Ann. H. P. , vol.3 , pp. 503-535
    • Nakanishi, K.1
  • 17
    • 0001366166 scopus 로고
    • Long range scattering for nonlinear Schrödinger equations in one space dimension
    • Ozawa, T.: Long range scattering for nonlinear Schrödinger equations in one space dimension. Commun. Math. Phys. 139, 479-493 (1991)
    • (1991) Commun. Math. Phys. , vol.139 , pp. 479-493
    • Ozawa, T.1
  • 19
    • 21144470926 scopus 로고
    • Global existence and asymptotic behaviour of solutions for the Maxwell-Schrödinger system in three space dimensions
    • Tsutsumi, Y.: Global existence and asymptotic behaviour of solutions for the Maxwell-Schrödinger system in three space dimensions. Commun. Math. Phys. 151, 543-576 (1993)
    • (1993) Commun. Math. Phys. , vol.151 , pp. 543-576
    • Tsutsumi, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.