-
8
-
-
0036350878
-
-
T. Yamamoto, H. Tajima, R. Kato, M. Uruichi and K. Yakushi: J. Phys. Soc. Jpn. 71 (2002) 1956.
-
(2002)
J. Phys. Soc. Jpn
, vol.71
, pp. 1956
-
-
Yamamoto, T.1
Tajima, H.2
Kato, R.3
Uruichi, M.4
Yakushi, K.5
-
9
-
-
15844373340
-
-
K. Yamamoto, T. Yamamoto, K. Yakushi, C. Pecile and M. Meneghetti: Phys. Rev. B 71 (2005) 045118.
-
(2005)
Phys. Rev. B
, vol.71
, pp. 045118
-
-
Yamamoto, K.1
Yamamoto, T.2
Yakushi, K.3
Pecile, C.4
Meneghetti, M.5
-
10
-
-
0034250645
-
-
D. S. Chow, E. Zamborszky, B. Alavi, D. J. Tantillo, A. Baur, C. A. Merlic and S. E. Brown: Phys. Rev. Lett. 85 (2000) 1698.
-
(2000)
Phys. Rev. Lett
, vol.85
, pp. 1698
-
-
Chow, D.S.1
Zamborszky, E.2
Alavi, B.3
Tantillo, D.J.4
Baur, A.5
Merlic, C.A.6
Brown, S.E.7
-
11
-
-
0037104302
-
-
F. Zamborszky, W. Yu, W. Raas, S. E. Brown, B. Alavi, C. A. Meric and A. Baur: Phys. Rev. B 66 (2002) 081103.
-
(2002)
Phys. Rev. B
, vol.66
, pp. 081103
-
-
Zamborszky, F.1
Yu, W.2
Raas, W.3
Brown, S.E.4
Alavi, B.5
Meric, C.A.6
Baur, A.7
-
14
-
-
42749100031
-
-
T. Itoh, K. Kanoda, K. Murata, T. Matsumoto, K. Hiraki and T. Takahashi: Phys. Rev. Lett. 93 (2004) 216408.
-
(2004)
Phys. Rev. Lett
, vol.93
, pp. 216408
-
-
Itoh, T.1
Kanoda, K.2
Murata, K.3
Matsumoto, T.4
Hiraki, K.5
Takahashi, T.6
-
15
-
-
42749101204
-
-
R. Chiba, K. Hiraki, T. Takahashi, H. M. Yamamoto and T. Nakamura: Phys. Rev. Lett. 93 (2004) 216405.
-
(2004)
Phys. Rev. Lett
, vol.93
, pp. 216405
-
-
Chiba, R.1
Hiraki, K.2
Takahashi, T.3
Yamamoto, H.M.4
Nakamura, T.5
-
17
-
-
27744452435
-
-
F. Sawano, I. Terasaki, H. Mori, T. Mori, M. Watanabe, N. Ikeda, Y. Nogami and Y. Noda: Nature 437 (2005) 522.
-
(2005)
Nature
, vol.437
, pp. 522
-
-
Sawano, F.1
Terasaki, I.2
Mori, H.3
Mori, T.4
Watanabe, M.5
Ikeda, N.6
Nogami, Y.7
Noda, Y.8
-
20
-
-
0001752830
-
-
H. Hasegawa, T. Naito, T. Inabe, T. Akutagawa and T. Nakamura: J. Mater. Chem. 8 (1998) 1567.
-
(1998)
J. Mater. Chem
, vol.8
, pp. 1567
-
-
Hasegawa, H.1
Naito, T.2
Inabe, T.3
Akutagawa, T.4
Nakamura, T.5
-
21
-
-
33847320317
-
-
The molecular orbital calculation suggests that the overlap integral between the HOMOs of the neighboring molecules has values of 0.82 × 10-2 in the intrachain direction and less than 1 × 10 -6 in the interchain direction. The intrachain overlap integral is expected to be several orders of magnitude larger than the interchain one
-
-6 in the interchain direction. The intrachain overlap integral is expected to be several orders of magnitude larger than the interchain one.
-
-
-
-
22
-
-
0034036773
-
-
M. Matsuda, T. Naito, T. Inabe, N. Hanasaki, H. Tajima, T. Otsuka, K. Awaga, B. Narymbetov and H. Kobayashi: J. Mater. Chem. 10 (2000) 631.
-
(2000)
J. Mater. Chem
, vol.10
, pp. 631
-
-
Matsuda, M.1
Naito, T.2
Inabe, T.3
Hanasaki, N.4
Tajima, H.5
Otsuka, T.6
Awaga, K.7
Narymbetov, B.8
Kobayashi, H.9
-
23
-
-
0034261385
-
-
N. Hanasaki, H. Tajima, M. Matsuda, T. Naito and T. Inabe: Phys. Rev. B 62 (2000) 5839.
-
(2000)
Phys. Rev. B
, vol.62
, pp. 5839
-
-
Hanasaki, N.1
Tajima, H.2
Matsuda, M.3
Naito, T.4
Inabe, T.5
-
24
-
-
33847707011
-
-
N. Hanasaki, M. Matsuda, H. Tajima, E. Ohmichi, T. Osada, T. Naito and T. Inabe: J. Phys. Soc. Jpn. 75 (2006) 033703.
-
(2006)
J. Phys. Soc. Jpn
, vol.75
, pp. 033703
-
-
Hanasaki, N.1
Matsuda, M.2
Tajima, H.3
Ohmichi, E.4
Osada, T.5
Naito, T.6
Inabe, T.7
-
28
-
-
33847327111
-
-
We also observed the signal of the impurity spins near the position of 3348 G. The ESR intensity of the sample is much larger than that of the impurities.
-
We also observed the signal of the impurity spins near the position of 3348 G. The ESR intensity of the sample is much larger than that of the impurities.
-
-
-
-
30
-
-
0001315668
-
-
M. Dumm, A. Loidl, B. W. Fravel, K. P. Starkey, L. K. Montgomery and M. Dressel: Phys. Rev. B 61 (2000) 511.
-
(2000)
Phys. Rev. B
, vol.61
, pp. 511
-
-
Dumm, M.1
Loidl, A.2
Fravel, B.W.3
Starkey, K.P.4
Montgomery, L.K.5
Dressel, M.6
-
31
-
-
0034261135
-
-
M. Dumm, A. Loidl, B. Alavi, K. P. Starkey, L. K. Montgomery and M. Dressel: Phys. Rev. B 62 (2000) 6512.
-
(2000)
Phys. Rev. B
, vol.62
, pp. 6512
-
-
Dumm, M.1
Loidl, A.2
Alavi, B.3
Starkey, K.P.4
Montgomery, L.K.5
Dressel, M.6
-
33
-
-
4243122680
-
-
W. M. Walsh, F. Wudl, E. Aharon-Shalom, L. W. Rupp, J. M. Vandenberg, K. Andres and J. B. Torrance: Phys. Rev. Lett. 49 (1982) 885.
-
(1982)
Phys. Rev. Lett
, vol.49
, pp. 885
-
-
Walsh, W.M.1
Wudl, F.2
Aharon-Shalom, E.3
Rupp, L.W.4
Vandenberg, J.M.5
Andres, K.6
Torrance, J.B.7
-
34
-
-
0842311752
-
-
N. Hanasaki, M. Matsuda, H. Tajima, T. Naito and T. Inabe: J. Phys. Soc. Jpn. 72 (2003) 3226.
-
(2003)
J. Phys. Soc. Jpn
, vol.72
, pp. 3226
-
-
Hanasaki, N.1
Matsuda, M.2
Tajima, H.3
Naito, T.4
Inabe, T.5
-
35
-
-
33847336618
-
-
jk represent the distance between the j-th and k-th spins, and the angle between the magnetic field and the vector between the positions of the j-th and k-th spins, respectively. When one sums the contribution of the dipole-dipole interaction between the neighboring molecules, the calculated linewidth has its minima at ≈ ±55° and its maximum at 0°. Here, we assume that the effects due to other mechanisms such as the spin-lattice interaction and exchange interaction are isotropic or have a monotonic angular dependence.
-
jk represent the distance between the j-th and k-th spins, and the angle between the magnetic field and the vector between the positions of the j-th and k-th spins, respectively. When one sums the contribution of the dipole-dipole interaction between the neighboring molecules, the calculated linewidth has its minima at ≈ ±55° and its maximum at 0°. Here, we assume that the effects due to other mechanisms such as the spin-lattice interaction and exchange interaction are isotropic or have a monotonic angular dependence.
-
-
-
-
36
-
-
33847328562
-
-
3 the charge density and spin density have the (rich, poor, rich, poor) configuration and (up-spin, 0, down-spin, 0) configuration along the one-dimensional direction, respectively. The contribution of the dipole-dipole interaction between the nearest-neighbor sites in the intrachain direction is reduced. This may be responsible for the anomalous angular dependence of the linewidth.
-
3) the charge density and spin density have the (rich, poor, rich, poor) configuration and (up-spin, 0, down-spin, 0) configuration along the one-dimensional direction, respectively. The contribution of the dipole-dipole interaction between the nearest-neighbor sites in the intrachain direction is reduced. This may be responsible for the anomalous angular dependence of the linewidth.
-
-
-
-
38
-
-
33847287018
-
-
T. Inabe calculated the molecular orbitals by the ZINDO method. Using their results, we estimated the electric field gradient eq due to electrons on various orbitals, and found that the eq due to one electron on the HOMO is 20% of the eq due to the total molecular charge. Since the latter corresponds to observed NQR frequency 14.6 MHz, the contribution from one electron on the HOMO is estimated to be 2.9 MHz. The observed frequency difference 30 kHz at low temperatures, therefore, indicates a difference in molecular charge of 0.01.
-
T. Inabe calculated the molecular orbitals by the ZINDO method. Using their results, we estimated the electric field gradient eq due to electrons on various orbitals, and found that the eq due to one electron on the HOMO is 20% of the eq due to the total molecular charge. Since the latter corresponds to observed NQR frequency 14.6 MHz, the contribution from one electron on the HOMO is estimated to be 2.9 MHz. The observed frequency difference 30 kHz at low temperatures, therefore, indicates a difference in molecular charge of 0.01.
-
-
-
-
39
-
-
0035598488
-
-
T. Sakurai, N. Nakagawa, S. Okubo, H. Ohta, K. Kanoda and K. Hiraki: J. Phys. Soc. Jpn. 70 (2001) 1794.
-
(2001)
J. Phys. Soc. Jpn
, vol.70
, pp. 1794
-
-
Sakurai, T.1
Nakagawa, N.2
Okubo, S.3
Ohta, H.4
Kanoda, K.5
Hiraki, K.6
|