메뉴 건너뛰기




Volumn 185, Issue 2, 2007, Pages 769-783

RFIMiner: A regression-based algorithm for recently frequent patterns in multiple time granularity data streams

Author keywords

Data mining; Data streams; Multiple time granularities; Recently frequent patterns; Suffix trees

Indexed keywords

COMPUTATIONAL METHODS; DATA MINING; MATHEMATICAL MODELS; PATTERN RECOGNITION; REGRESSION ANALYSIS;

EID: 33847260133     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2006.06.115     Document Type: Article
Times cited : (4)

References (22)
  • 1
    • 0027621699 scopus 로고    scopus 로고
    • R. Agrawal, T. Imielinske, A. Swami, Mining association rules between Sets of items in large databases, in: Proceedings of the ACM SIGMOD International Conference Management of Data, Washington, DC (1993) pp. 207-216.
  • 2
    • 33847283224 scopus 로고    scopus 로고
    • R. Agrawal, R. Srikant, Fast algorithm for mining association rules, in: Proceedings of 21st International Conference on Very Large Databases, Santiago, Chile (1994) pp. 487-499.
  • 3
    • 0029212693 scopus 로고    scopus 로고
    • R. Agrawal, R. Srikant, Mining sequential patterns, in: Proceedings of the International Conference on Data Engineering, Taipei, Taiwan (1995) pp. 3-14.
  • 4
    • 0032091573 scopus 로고    scopus 로고
    • R. Bayardo, Efficiently mining long patterns from databases, in: Proceedings of the ACM SIGMOD International Conference Management of Data, Seattle, WA (1998) pp. 85-93.
  • 5
    • 0031161999 scopus 로고    scopus 로고
    • S. Brin, et al., Beyond market basket: Generalizing association rules to correlations, in: Proceedings of the ACM SIGMOD International Conference Management of Data, Tucson, Arizona (1997) pp. 265-276.
  • 6
    • 27144468394 scopus 로고    scopus 로고
    • Discovery of frequent episodes in event sequences
    • Mannila H., et al. Discovery of frequent episodes in event sequences. Data Mining and Knowledge Discovery 1 (1997) 259-289
    • (1997) Data Mining and Knowledge Discovery , vol.1 , pp. 259-289
    • Mannila, H.1
  • 7
    • 0030643619 scopus 로고    scopus 로고
    • B. Lent, et al., Clustering association rules, in: Proceedings of the International Conference on Data Engineering, Birmingham, England (1997) pp. 220-231.
  • 8
    • 84883810104 scopus 로고    scopus 로고
    • K. Wang, S. Zhou, J. Han, Profit Mining: From Patterns to Actions, in: Proceedings of International. Conference on Extending Data Base Technology, Prague, Czech (2002) pp. 70-87.
  • 9
    • 0039253846 scopus 로고    scopus 로고
    • J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate generation, in: Proceedings of the ACM SIGMOD International Conference Management of Data, Dallas, TX (2000) pp. 1-12.
  • 10
    • 78149320187 scopus 로고    scopus 로고
    • J. Pei, J. Han, H. Lu, et al., H-Mine: Hyper-structure mining of frequent patterns in large databases, in: Proceedings of the IEEE International Conference on Data Mining, San Jose, CA (2001) pp. 175-186.
  • 11
    • 0242709391 scopus 로고    scopus 로고
    • J. Liu, Y. Pan, K. Wang, J. Han, Mining freuquent itemsets by opportunistic projection, in: Proceedings of SIGKDD'02. KDD (2002) pp. 229-238.
  • 12
    • 84911977993 scopus 로고    scopus 로고
    • N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal, Discovering frequent closed itemsets for association rules, in: Proceedings of International Conference on Database Theory, Jerusalem, Israel (1999) pp. 398-416.
  • 13
    • 33847335378 scopus 로고    scopus 로고
    • J. Pei, J. Han, R. Mao, CLOSET: An efficient algorithm for mining frequent closed itemsets, in: Proceedings of the ACM SIGMOD International Workshop Data Mining and Knowledge Discovery, Dallas, TX (2000) pp. 11-20.
  • 14
    • 33847264279 scopus 로고    scopus 로고
    • M. Zaki, C. Hsiao, CHARM: An efficient algorithm for closed itemset mining, in: Proceedings of SIAM Conference on Data Mining, Arlington, VA (2002) pp. 457-473.
  • 15
    • 0035007850 scopus 로고    scopus 로고
    • D. Burdick, M. Calimlim, J. Gehrke, MAFIA: A maximal frequent itemset algorithm for transactional databases, in: Proceedings of the International Conference on Data Engineering, Heidelberg, Germany (2001) pp. 443-452.
  • 16
    • 33847271501 scopus 로고    scopus 로고
    • G.S. Manku, R. Motwani, Approximate Frequency Counts Over Data Streams, in: Proceedings of the International Conference on Very Large Data Bases, Hong Kong, China (2002) pp. 346-357.
  • 17
    • 10044238664 scopus 로고    scopus 로고
    • Mining frequent patterns in data streams at multiple time granularities
    • Giannella C., Han J., Pei J., Yan X., and Yu P.S. Mining frequent patterns in data streams at multiple time granularities. Next Generation Data Mining Chapter 3 (2002) 191-211
    • (2002) Next Generation Data Mining , vol.Chapter 3 , pp. 191-211
    • Giannella, C.1    Han, J.2    Pei, J.3    Yan, X.4    Yu, P.S.5
  • 18
    • 33847314971 scopus 로고    scopus 로고
    • R. Jin, G. Agrawal. An Algorithm for In-Core Frequent Itemset Mining on Streaming Data, [online] Available from: http://www.cse.ohio-state.edu/agrawal/ (2004).
  • 19
    • 85012188661 scopus 로고    scopus 로고
    • W.G. Teng, M.S. Chen, P.S. Yu, A Regression-Based Temporal Pattern Mining Scheme for Data Streams, in: Proceedings of the 29th VLDB Conference (2003) pp. 93-104.
  • 20
    • 77952414052 scopus 로고    scopus 로고
    • J. Chang, W. Lee, Finding Recent Frequent Itemsets Adaptively over Online Data Streams, in: Proceedings of the ACM International Conference on Knowledge Discovery and Data Mining, Washington, DC (2003) pp. 487-492.
  • 21
    • 3142639461 scopus 로고    scopus 로고
    • A sliding window method for finding recently frequent itemsets over online data streams
    • Chang J., and Lee W. A sliding window method for finding recently frequent itemsets over online data streams. Journal of Information Science and Engineering (2004) 753-762
    • (2004) Journal of Information Science and Engineering , pp. 753-762
    • Chang, J.1    Lee, W.2
  • 22
    • 33745458995 scopus 로고    scopus 로고
    • D. Xin, J.W. Han, X.F. Yan, H. Cheng, Mining Compressed Frequent Pattern Sets, in: Proceedings of the International Conference on Very Large Data Bases, Trondheim, Norway, (2005).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.