-
1
-
-
33847204436
-
-
N. E. Barabanov. Lyapunov indicator of discrete inclusions. I-III. Autom. Remote Control., 49(2,3,5): 152-157, 283-287, 558-565, 1988.
-
N. E. Barabanov. Lyapunov indicator of discrete inclusions. I-III. Autom. Remote Control., vol. 49(2,3,5): 152-157, 283-287, 558-565, 1988.
-
-
-
-
2
-
-
0000406421
-
1, solution to an overde-termined linear system
-
1, solution to an overde-termined linear system, SIAM J. Numer. Anal., vol. 15(2) 1978, pp 224-241.
-
(1978)
SIAM J. Numer. Anal
, vol.15
, Issue.2
, pp. 224-241
-
-
Bartels, R.H.1
Conn, A.R.2
Sinclair, J.W.3
-
3
-
-
0142138715
-
An elementary counterexample to the finiteness conjecture
-
V.D. Blondel, J. Theys, and A.A. Vladimirov. An elementary counterexample to the finiteness conjecture. SIAM J. Matrix Analysis Appl., vol. 24(4) 2003, pp 963-970.
-
(2003)
SIAM J. Matrix Analysis Appl
, vol.24
, Issue.4
, pp. 963-970
-
-
Blondel, V.D.1
Theys, J.2
Vladimirov, A.A.3
-
4
-
-
0002046992
-
Bounded semigroups of matrices
-
M.A. Berger and Y. Wang. Bounded semigroups of matrices. Linear Algebra Appl., vol. 166, 1992, pp 21-27.
-
(1992)
Linear Algebra Appl
, vol.166
, pp. 21-27
-
-
Berger, M.A.1
Wang, Y.2
-
5
-
-
0001219086
-
Sets of matrices all infinite products of which converge
-
I. Daubechies and J.C. Lagarias. Sets of matrices all infinite products of which converge. Linear Algebra Appl., vol. 161, 1992, pp 227-263.
-
(1992)
Linear Algebra Appl
, vol.161
, pp. 227-263
-
-
Daubechies, I.1
Lagarias, J.C.2
-
6
-
-
0041956882
-
The generalized spectral-radius theorem: An analyticgeometric proof
-
L. Elsner. The generalized spectral-radius theorem: an analyticgeometric proof. Linear Algebra Appl., vol. 220, 1995, pp 151-159.
-
(1995)
Linear Algebra Appl
, vol.220
, pp. 151-159
-
-
Elsner, L.1
-
7
-
-
9644300965
-
Computing the joint spectral radius
-
G. Gripenberg. Computing the joint spectral radius. Linear Algebra Appl., vol. 234, 1996, pp 43-60.
-
(1996)
Linear Algebra Appl
, vol.234
, pp. 43-60
-
-
Gripenberg, G.1
-
8
-
-
33847192632
-
-
N. Guglielmi, F. Wirth and M. Zennaro. Complex polytope extremality results for families of matrices. Report 04-03 Universität Bremen, 2004, SIAM J. Matrix Analysis Appl., in press.
-
N. Guglielmi, F. Wirth and M. Zennaro. Complex polytope extremality results for families of matrices. Report 04-03 Universität Bremen, 2004, SIAM J. Matrix Analysis Appl., in press.
-
-
-
-
9
-
-
0347770774
-
On the asymptotic properties of a family of matrices
-
N. Guglielmi and M. Zennaro. On the asymptotic properties of a family of matrices. Linear Algebra Appl., vol. 322, 2001, pp 169-192.
-
(2001)
Linear Algebra Appl
, vol.322
, pp. 169-192
-
-
Guglielmi, N.1
Zennaro, M.2
-
10
-
-
0035636058
-
On the zero-stability of variable stepsize multistep methods: The spectral radius approach
-
N. Guglielmi and M. Zennaro. On the zero-stability of variable stepsize multistep methods: the spectral radius approach. Numer. Math., vol. 88, 2001, pp 445-458.
-
(2001)
Numer. Math
, vol.88
, pp. 445-458
-
-
Guglielmi, N.1
Zennaro, M.2
-
11
-
-
84867954397
-
On the limit products of a family of matrices
-
N. Guglielmi and M. Zennaro. On the limit products of a family of matrices. Linear Algebra Appl., vol. 362, 2003, pp 11-27.
-
(2003)
Linear Algebra Appl
, vol.362
, pp. 11-27
-
-
Guglielmi, N.1
Zennaro, M.2
-
12
-
-
0038166019
-
Stability of one-leg ⊖-methods for the variable coefficient pantograph equation on the quasi-geometric mesh
-
N. Guglielmi and M. Zennaro. Stability of one-leg ⊖-methods for the variable coefficient pantograph equation on the quasi-geometric mesh, IMA J. Numer. Anal., vol. 23, 2003, pp 421-438.
-
(2003)
IMA J. Numer. Anal
, vol.23
, pp. 421-438
-
-
Guglielmi, N.1
Zennaro, M.2
-
13
-
-
33746138353
-
Balanced complex polytopes and related vector and matrix norms
-
In preparation
-
N. Guglielmi and M. Zennaro. Balanced complex polytopes and related vector and matrix norms. In preparation, 2005.
-
(2005)
-
-
Guglielmi, N.1
Zennaro, M.2
-
15
-
-
21844487357
-
The finiteness conjecture for the generalized spectral radius of a set of matrices
-
J.C. Lagarias and Y. Wang. The finiteness conjecture for the generalized spectral radius of a set of matrices. Linear Algebra Appl., vol. 214, 1995, pp 17-42.
-
(1995)
Linear Algebra Appl
, vol.214
, pp. 17-42
-
-
Lagarias, J.C.1
Wang, Y.2
-
16
-
-
33847200943
-
-
M. Maesumi. Optimum unit ball for joint spectral radius: an example from four-coefficient MRA, in Approximation Theory VIII: Wavelets and Multilevel Approximation. C.K. Chid and L.L Schumaker (eds,), 2, 1995, pp 267-274.
-
M. Maesumi. "Optimum unit ball for joint spectral radius: an example from four-coefficient MRA", in Approximation Theory VIII: Wavelets and Multilevel Approximation. C.K. Chid and L.L Schumaker (eds,), vol. 2, 1995, pp 267-274.
-
-
-
-
17
-
-
0040902031
-
Calculating joint spectral radius of matrices and Holder exponent of wavelets
-
IX. C.K. Chui and L.L. Schumaker eds
-
M. Maesumi. "Calculating joint spectral radius of matrices and Holder exponent of wavelets", in Approximation Theory IX. C.K. Chui and L.L. Schumaker (eds.), 1998, pp 1-8.
-
(1998)
Approximation Theory
, pp. 1-8
-
-
Maesumi, M.1
-
18
-
-
0000719845
-
A note on the joint spectral radius
-
G.C. Rota and G. Strang. A note on the joint spectral radius. Indag. Math., vol. 22, 1960, pp 379-381.
-
(1960)
Indag. Math
, vol.22
, pp. 379-381
-
-
Rota, G.C.1
Strang, G.2
-
19
-
-
0040958701
-
Simultaneous Schur stability
-
M.H. Shih. Simultaneous Schur stability. Linear Algebra Appl., vol 287, 1999, pp 323-336.
-
(1999)
Linear Algebra Appl
, vol.287
, pp. 323-336
-
-
Shih, M.H.1
-
20
-
-
0040944392
-
Asymptotic stability and generalized Gelfand spectral radius formula
-
M.H. Shih, J.W. Wu, and C.T. Pang. Asymptotic stability and generalized Gelfand spectral radius formula. Linear Algebra Appl., vol. 252, 1997, pp 61-70.
-
(1997)
Linear Algebra Appl
, vol.252
, pp. 61-70
-
-
Shih, M.H.1
Wu, J.W.2
Pang, C.T.3
-
21
-
-
0030651078
-
The Lyapunov exponent and joint spectral radius of pairs of matrices are hard - when not impossible - to compute and to approximate
-
J. N. Tsitsiklis and V. Blondel. The Lyapunov exponent and joint spectral radius of pairs of matrices are hard - when not impossible - to compute and to approximate. Math. Contr., Sign., and Syst., vol. 10, 1997, pp31-40.
-
(1997)
Math. Contr., Sign., and Syst
, vol.10
, pp. 31-40
-
-
Tsitsiklis, J.N.1
Blondel, V.2
-
22
-
-
31244433291
-
The generalized spectral radius and extremal norms
-
F. Wirth. The generalized spectral radius and extremal norms. Linear Algebra Appl., vol. 342, 2002, pp 17-40.
-
(2002)
Linear Algebra Appl
, vol.342
, pp. 17-40
-
-
Wirth, F.1
|