-
1
-
-
0018453090
-
Stability of dynamical systems: A constructive approach
-
Brayton R.K., Tong Ch. Stability of dynamical systems: a constructive approach. IEEE Trans. Circuits Systems. 26:1979;224-234.
-
(1979)
IEEE Trans. Circuits Systems
, vol.26
, pp. 224-234
-
-
Brayton, R.K.1
Tong, Ch.2
-
4
-
-
0001219086
-
Sets of matrices all infinite products of which converge
-
Daubechies I., Lagarias J.C. Sets of matrices all infinite products of which converge. Linear Algebra Appl. 161:1992;227-263.
-
(1992)
Linear Algebra Appl.
, vol.161
, pp. 227-263
-
-
Daubechies, I.1
Lagarias, J.C.2
-
5
-
-
0041956882
-
The generalized spectral-radius theorem: An analytic-geometric proof
-
Elsner L. The generalized spectral-radius theorem: an analytic-geometric proof. Linear Algebra Appl. 220:1995;151-159.
-
(1995)
Linear Algebra Appl.
, vol.220
, pp. 151-159
-
-
Elsner, L.1
-
6
-
-
0346434517
-
On the zero stability of variable stepsize multistep methods: The spectral radius approach
-
in press
-
N. Guglielmi, M. Zennaro, On the zero stability of variable stepsize multistep methods: the spectral radius approach, Numer. Math. (2000), in press.
-
(2000)
Numer. Math.
-
-
Guglielmi, N.1
Zennaro, M.2
-
8
-
-
21844487357
-
The finiteness conjecture for the generalized spectral radius of a set of matrices
-
Lagarias J.C., Wang Y. The finiteness conjecture for the generalized spectral radius of a set of matrices. Linear Algebra Appl. 214:1995;17-42.
-
(1995)
Linear Algebra Appl.
, vol.214
, pp. 17-42
-
-
Lagarias, J.C.1
Wang, Y.2
-
9
-
-
0007177843
-
Optimum unit ball for joint spectral radius: An example from four-coefficient MRA
-
in: C.K. Chui, L.L. Schumaker (Eds.), World Scientific, Singapore
-
M. Maesumi, Optimum unit ball for joint spectral radius: an example from four-coefficient MRA, in: C.K. Chui, L.L. Schumaker (Eds.), Approximation Theory VIII: Wavelets and Multilevel Approximation, World Scientific, Singapore, 1995, vol 2, pp. 267-274.
-
(1995)
Approximation Theory VIII: Wavelets and Multilevel Approximation
, vol.2
, pp. 267-274
-
-
Maesumi, M.1
-
10
-
-
0040902031
-
Calculating joint spectral radius of matrices and Hölder exponent of wavelets
-
C.K. Chui, & L.L. Schumaker. Singapore: World Scientific
-
Maesumi M. Calculating joint spectral radius of matrices and Hölder exponent of wavelets. Chui C.K., Schumaker L.L. Approximation Theory IX. 1998;World Scientific, Singapore.
-
(1998)
Approximation Theory IX
-
-
Maesumi, M.1
-
11
-
-
0000719845
-
A note on the joint spectral radius
-
Rota G.C., Strang G. A note on the joint spectral radius. Indag. Math. 22:1960;379-381.
-
(1960)
Indag. Math.
, vol.22
, pp. 379-381
-
-
Rota, G.C.1
Strang, G.2
-
12
-
-
0040944392
-
Asymptotic stability and generalized Gelfand spectral radius formula
-
Shih M.H., Wu J.W., Pang C.T. Asymptotic stability and generalized Gelfand spectral radius formula. Linear Algebra Appl. 252:1997;61-70.
-
(1997)
Linear Algebra Appl.
, vol.252
, pp. 61-70
-
-
Shih, M.H.1
Wu, J.W.2
Pang, C.T.3
|