메뉴 건너뛰기




Volumn 3, Issue , 2005, Pages 1885-1890

Probabilistic Mercer kernel clusters

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; MAXIMUM LIKELIHOOD ESTIMATION; PROBABILITY DISTRIBUTIONS; STATE SPACE METHODS; STATISTICAL METHODS;

EID: 33847155005     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1)

References (35)
  • 1
    • 14844338615 scopus 로고    scopus 로고
    • Criteria based on mutual information minimization for blind source separation in post nonlinear mixtures
    • S. Achard, D. Pham and C. Jutten, "Criteria based on mutual information minimization for blind source separation in post nonlinear mixtures", Signal Processing, vol. 85, pp. 965-974, 2005.
    • (2005) Signal Processing , vol.85 , pp. 965-974
    • Achard, S.1    Pham, D.2    Jutten, C.3
  • 3
    • 14844353639 scopus 로고    scopus 로고
    • A general approach for mutual information minimization and its application to blind source separation
    • M Babaie-Zadeh and C. Jutten, "A general approach for mutual information minimization and its application to blind source separation", Signal Processing, vol. 85, pp. 975-995, 2005.
    • (2005) Signal Processing , vol.85 , pp. 975-995
    • Babaie-Zadeh, M.1    Jutten, C.2
  • 4
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • R. Battiti, "Using mutual information for selecting features in supervised neural net learning", IEEE Trans. on Neural Networks, 5, 537-550, 1994.
    • (1994) IEEE Trans. on Neural Networks , vol.5 , pp. 537-550
    • Battiti, R.1
  • 10
    • 0029305528 scopus 로고
    • Gaussian parsimonious clustering models
    • G. Celeux and G. Govaert, "Gaussian parsimonious clustering models," Pattern Recognition, vol. 28, pp. 781-793, 1995.
    • (1995) Pattern Recognition , vol.28 , pp. 781-793
    • Celeux, G.1    Govaert, G.2
  • 11
    • 0041877699 scopus 로고    scopus 로고
    • A new kernel-based fuzzy clustering approach: Support vector clustering with cell growing
    • J.H. Chiang P.Y. Hao, "A new kernel-based fuzzy clustering approach: support vector clustering with cell growing", IEEE Transactions on Fuzzy Systems, vol. 11, pp. 518-527, 2003.
    • (2003) IEEE Transactions on Fuzzy Systems , vol.11 , pp. 518-527
    • Chiang, J.H.1    Hao, P.Y.2
  • 13
    • 14844340206 scopus 로고    scopus 로고
    • A mutual information extension to the matched filter
    • D. Erdogmus, R. Agrawal and J.C. Principe, "A mutual information extension to the matched filter", Signal Processing, vol. 85, pp. 927-935, 2005.
    • (2005) Signal Processing , vol.85 , pp. 927-935
    • Erdogmus, D.1    Agrawal, R.2    Principe, J.C.3
  • 15
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering method? Answers via model-based cluster analysis
    • C. Fraley and A. E. Raftery, "How many clusters? Which clustering method? Answers via model-based cluster analysis," The Computer Journal, vol. 41, pp. 578-588, 1998.
    • (1998) The Computer Journal , vol.41 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 16
    • 34548696055 scopus 로고
    • Independent coordinates for strange attractors from mutual information
    • A.M. Fraser and H.L. Swinney, "Independent coordinates for strange attractors from mutual information", Physical Review A, 33, 1134-1139, 1986.
    • (1986) Physical Review A , vol.33 , pp. 1134-1139
    • Fraser, A.M.1    Swinney, H.L.2
  • 17
    • 0036565280 scopus 로고    scopus 로고
    • Mercer kernel-based clustering in feature space
    • M. Girolami, "Mercer kernel-based clustering in feature space," IEEE Trans onNeural Networks, vol. 13, pp. 780-784, 2002.
    • (2002) IEEE Trans onNeural Networks , vol.13 , pp. 780-784
    • Girolami, M.1
  • 18
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • P.J. Green, "Reversible jump Markov chain Monte Carlo computation and Bayesian model determination", Biometrika, vol. 82, pp. 711-732, 1995.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 21
    • 19044391788 scopus 로고    scopus 로고
    • Relevance measures for subset variable selection in regression problems based on k-additive mutual information
    • A. Kojadinovic, "Relevance measures for subset variable selection in regression problems based on k-additive mutual information", Computational Statistics & Data Analysis, vol. 49, pp. 1205-1227, 2005.
    • (2005) Computational Statistics & Data Analysis , vol.49 , pp. 1205-1227
    • Kojadinovic, A.1
  • 23
    • 0842300534 scopus 로고    scopus 로고
    • Clustering incomplete data using kernel-based fuzzy c-means algorithm
    • D. Qiang and S.C. Chen, "Clustering incomplete data using kernel-based fuzzy c-means algorithm", Neural Processing Letters, vol. 18, pp. 155-162, 2003.
    • (2003) Neural Processing Letters , vol.18 , pp. 155-162
    • Qiang, D.1    Chen, S.C.2
  • 24
    • 0242475337 scopus 로고    scopus 로고
    • Kernel hierarchical clustering of microarray gene expression data
    • J. Qin, D. Lewis and W.S. Noble, "Kernel hierarchical clustering of microarray gene expression data", Bioinformatics. vol. 19, pp. 2097-2104, 2003.
    • (2003) Bioinformatics , vol.19 , pp. 2097-2104
    • Qin, J.1    Lewis, D.2    Noble, W.S.3
  • 25
    • 18244378520 scopus 로고    scopus 로고
    • On Bayesian analysis of mixtures with an unknown number of components
    • S. Richardson and P.J. Green, "On Bayesian analysis of mixtures with an unknown number of components", J. R. Statistist. Soc. B, vol. 59, pp. 731-792, 1997.
    • (1997) J. R. Statistist. Soc. B , vol.59 , pp. 731-792
    • Richardson, S.1    Green, P.J.2
  • 26
    • 0033334719 scopus 로고    scopus 로고
    • Minimum entropy data partitioning
    • S. J. Roberts, R. Everson and I. Rezek, "Minimum entropy data partitioning," ICANN, pp. 844-849, 1999.
    • (1999) ICANN , pp. 844-849
    • Roberts, S.J.1    Everson, R.2    Rezek, I.3
  • 28
    • 18144374586 scopus 로고    scopus 로고
    • Examining methods for estimating mutual information in spiking neural systems
    • C.J. Rozell and D.H. Johnson, "Examining methods for estimating mutual information in spiking neural systems", Neurocomputing, vol. 65-66, pp. 429-434, 2005.
    • (2005) Neurocomputing , vol.65-66 , pp. 429-434
    • Rozell, C.J.1    Johnson, D.H.2
  • 29
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz, "Estimating the dimension of a model", Ann. Stat. vol, 6, pp. 461-464, 1978.
    • (1978) Ann. Stat , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 30
    • 84856043672 scopus 로고
    • The mathematical theory of communication
    • C.E. Shannon, "The mathematical theory of communication", Bell Systems Technique Journal, 27, 379-423, 1948.
    • (1948) Bell Systems Technique Journal , vol.27 , pp. 379-423
    • Shannon, C.E.1
  • 31
    • 14844348800 scopus 로고    scopus 로고
    • Fast kernel entropy estimation and optimization
    • S. Shwartz, M. Zibulevsky and Y.Y. Schechner, "Fast kernel entropy estimation and optimization", Signal Processing, vol. 85, pp. 1045-1058, 2005.
    • (2005) Signal Processing , vol.85 , pp. 1045-1058
    • Shwartz, S.1    Zibulevsky, M.2    Schechner, Y.Y.3
  • 35
    • 0014779869 scopus 로고
    • Stochastic estimation of a mixture of normal density functions using an information criterion
    • T.Y. Young and G. Coraluppi, "Stochastic estimation of a mixture of normal density functions using an information criterion", IEEE Trans. On Information Theory, 16, 258-263, 1970.
    • (1970) IEEE Trans. On Information Theory , vol.16 , pp. 258-263
    • Young, T.Y.1    Coraluppi, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.