메뉴 건너뛰기




Volumn 20, Issue 2, 2007, Pages 210-219

Stochastic complexities of general mixture models in variational Bayesian learning

Author keywords

Bayesian learning; Exponential family; Free energy; Kullback information; Mixture model; Non regular model; Stochastic complexity; Variational Bayes

Indexed keywords

ASYMPTOTIC STABILITY; COMPUTATIONAL COMPLEXITY; MATHEMATICAL MODELS; PARAMETER ESTIMATION; STATISTICAL METHODS; STOCHASTIC CONTROL SYSTEMS;

EID: 33847097822     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2006.05.030     Document Type: Article
Times cited : (20)

References (22)
  • 1
    • 0034202524 scopus 로고    scopus 로고
    • Nonmonotonic generalization bias of Gaussian mixture models
    • Akaho S., and Kappen H.J. Nonmonotonic generalization bias of Gaussian mixture models. Neural Computation 12 4 (2000) 1411-1427
    • (2000) Neural Computation , vol.12 , Issue.4 , pp. 1411-1427
    • Akaho, S.1    Kappen, H.J.2
  • 2
    • 51849177370 scopus 로고
    • Likelihood and Bayes procedure
    • Bernald J.M. (Ed), University Press, Valencia, Spain
    • Akaike H. Likelihood and Bayes procedure. In: Bernald J.M. (Ed). Bayesian statistics (1980), University Press, Valencia, Spain 143-166
    • (1980) Bayesian statistics , pp. 143-166
    • Akaike, H.1
  • 3
    • 0042376839 scopus 로고    scopus 로고
    • On some inequalities for the Gamma and Psi functions
    • Alzer H. On some inequalities for the Gamma and Psi functions. Mathematics of Computation 66 217 (1997) 373-389
    • (1997) Mathematics of Computation , vol.66 , Issue.217 , pp. 373-389
    • Alzer, H.1
  • 4
    • 33847090866 scopus 로고    scopus 로고
    • Attias, H. (1999). Inferring parameters and structure of latent variable models by variational Bayes. In Proceedings of uncertainty in artificial intelligence (pp. 21-30)
  • 5
    • 33847121378 scopus 로고    scopus 로고
    • Beal, M. J. (2003). Variational algorithms for approximate Bayesian inference. Ph.D. thesis. University College London
  • 6
    • 33847092631 scopus 로고    scopus 로고
    • Brown, L. D. (1986). Fundamentals of statistical exponential families. IMS Lecture Notes-Monograph Series: Vol. 9
  • 8
    • 33847122215 scopus 로고    scopus 로고
    • Hartigan, J. A. (1985). A failure of likelihood asymptotics for normal mixtures. In Proceedings of the Berkeley conference in honor of J. Neyman and J. Kiefer (pp. 807-810)
  • 10
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • Mackay D.J. Bayesian interpolation. Neural Computation 4 2 (1992) 415-447
    • (1992) Neural Computation , vol.4 , Issue.2 , pp. 415-447
    • Mackay, D.J.1
  • 12
    • 0000318553 scopus 로고
    • Stochastic complexity and modeling
    • Rissanen J. Stochastic complexity and modeling. Annals of Statistics 14 3 (1986) 1080-1100
    • (1986) Annals of Statistics , vol.14 , Issue.3 , pp. 1080-1100
    • Rissanen, J.1
  • 13
    • 0000147488 scopus 로고    scopus 로고
    • Online model selection based on the variational Bayes
    • Sato M. Online model selection based on the variational Bayes. Neural Computation 13 7 (2001) 1649-1681
    • (2001) Neural Computation , vol.13 , Issue.7 , pp. 1649-1681
    • Sato, M.1
  • 14
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Annals of Statistics 6 2 (1978) 461-464
    • (1978) Annals of Statistics , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 15
    • 0036887504 scopus 로고    scopus 로고
    • Bayesian model search for mixture models based on optimizing variational bounds
    • Ueda N., and Ghahramani Z. Bayesian model search for mixture models based on optimizing variational bounds. International Journal of Neural Networks 15 (2002) 1223-1241
    • (2002) International Journal of Neural Networks , vol.15 , pp. 1223-1241
    • Ueda, N.1    Ghahramani, Z.2
  • 16
    • 33646531170 scopus 로고    scopus 로고
    • Watanabe, K., & Watanabe, S. (2005). Stochastic complexity for mixture of exponential families in variational Bayes. In Proceedings of the 16th international conference on algorithmic learning theory (pp. 107-121)
  • 17
    • 33646348720 scopus 로고    scopus 로고
    • Stochastic complexities of Gaussian mixtures in variational Bayesian approximation
    • Watanabe K., and Watanabe S. Stochastic complexities of Gaussian mixtures in variational Bayesian approximation. Journal of Machine Learning Research 7 4 (2006) 625-644
    • (2006) Journal of Machine Learning Research , vol.7 , Issue.4 , pp. 625-644
    • Watanabe, K.1    Watanabe, S.2
  • 19
    • 0035316373 scopus 로고    scopus 로고
    • Algebraic analysis for non-identifiable learning machines
    • Watanabe S. Algebraic analysis for non-identifiable learning machines. Neural Computation 13 4 (2001) 899-933
    • (2001) Neural Computation , vol.13 , Issue.4 , pp. 899-933
    • Watanabe, S.1
  • 20
    • 33847106100 scopus 로고    scopus 로고
    • Yamazaki, K., Nagata, K., & Watanabe, S. (2005). A new method of model selection based on learning coefficient. In Proceedings of international symposium on nonlinear theory and its applications (pp. 389-392)
  • 21
    • 0742324924 scopus 로고    scopus 로고
    • Singularities in mixture models and upper bounds of stochastic complexity
    • Yamazaki K., and Watanabe S. Singularities in mixture models and upper bounds of stochastic complexity. International Journal of Neural Networks 16 (2003) 1023-1038
    • (2003) International Journal of Neural Networks , vol.16 , pp. 1023-1038
    • Yamazaki, K.1    Watanabe, S.2
  • 22
    • 33847139152 scopus 로고    scopus 로고
    • Yamazaki, K., & Watanabe, S. (2003b). Stochastic complexity of Bayesian networks. In Proceedings of uncertainty in artificial intelligence (pp. 592-599)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.