-
1
-
-
0027257001
-
A universal theorem on learning curves
-
Amari, S. (1993). A universal theorem on learning curves. Neural Networks, 6, 161-166.
-
(1993)
Neural Networks
, vol.6
, pp. 161-166
-
-
Amari, S.1
-
2
-
-
0039677510
-
Scaling laws in learning of classification tasks
-
Barkai, N., Seung H. S., & Sompolinsky, H. (1993). Scaling laws in learning of classification tasks. Physical Review Letters, 70, 3167-3170.
-
(1993)
Physical Review Letters
, vol.70
, pp. 3167-3170
-
-
Barkai, N.1
Seung, H.S.2
Sompolinsky, H.3
-
3
-
-
0018918224
-
A convergence theorem for the fuzzy ISODATA clustering algorithms
-
Bezdek, J. C. (1980). A convergence theorem for the fuzzy ISODATA clustering algorithms. IEEE Trans. on PAMI, 2, 1-8.
-
(1980)
IEEE Trans. on PAMI
, vol.2
, pp. 1-8
-
-
Bezdek, J.C.1
-
4
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. J. Royal Statistical Soc. Ser. B, 39, 1-38.
-
(1977)
J. Royal Statistical Soc. Ser. B
, vol.39
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
5
-
-
0000761366
-
A competitive modular connectionist architecture
-
D. Touretzky & R. Lippmann (Eds.), San Mateo, CA: Morgan Kaufmann
-
Jacobs, R. A., & Jordan, M. I. (1991). A competitive modular connectionist architecture. In D. Touretzky & R. Lippmann (Eds.), Advances in neural information processing systems, 3 (pp. 767-773). San Mateo, CA: Morgan Kaufmann.
-
(1991)
Advances in Neural Information Processing Systems
, vol.3
, pp. 767-773
-
-
Jacobs, R.A.1
Jordan, M.I.2
-
6
-
-
0000262562
-
Hierarchical mixtures of experts and the EM algorithm
-
Jordan, M. I., & Jacobs, R. A. (1994). Hierarchical mixtures of experts and the EM algorithm. Neural Computation, 6, 181-214.
-
(1994)
Neural Computation
, vol.6
, pp. 181-214
-
-
Jordan, M.I.1
Jacobs, R.A.2
-
7
-
-
0040269271
-
Using Boltzmann machines for probability estimation: A general framework for neural network learning
-
S. Gielen et al. (Eds.), Berlin: Springer-Verlag
-
Kappen, B. (1993). Using Boltzmann machines for probability estimation: A general framework for neural network learning. In S. Gielen et al. (Eds.), Proc. of ICANN'93 (pp. 521-526). Berlin: Springer-Verlag.
-
(1993)
Proc. of ICANN'93
, pp. 521-526
-
-
Kappen, B.1
-
8
-
-
0029025010
-
Deterministic learning rules for Boltzmann machines
-
Kappen, B. (1995). Deterministic learning rules for Boltzmann machines. Neural Networks, 8, 537-548.
-
(1995)
Neural Networks
, vol.8
, pp. 537-548
-
-
Kappen, B.1
-
9
-
-
0000902690
-
The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems
-
J. E. Moody, S. J. Hanson, & R. P. Lippman (Eds.), San Mateo, CA: Morgan Kaufmann
-
Moody, J. (1992). The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems. In J. E. Moody, S. J. Hanson, & R. P. Lippman (Eds.), Advances in neural information processing systems, 4 (pp. 847-854). San Mateo, CA: Morgan Kaufmann.
-
(1992)
Advances in Neural Information Processing Systems
, vol.4
, pp. 847-854
-
-
Moody, J.1
-
10
-
-
0040269272
-
A criterion for determining the number of parameters in an artificial neural network model
-
T. Kohonen et al. (Eds.), Amsterdam: Elsevier
-
Murata, N., Yoshizawa, S., & Amari, S. (1991). A criterion for determining the number of parameters in an artificial neural network model. In T. Kohonen et al. (Eds.), Artificial neural network (ICANN) (pp. 9-14). Amsterdam: Elsevier.
-
(1991)
Artificial Neural Network (ICANN)
, pp. 9-14
-
-
Murata, N.1
Yoshizawa, S.2
Amari, S.3
-
11
-
-
0028544395
-
Network information criterions -determining the number of parameters for an artificial neural network model
-
Murata, N., Yoshizawa, S., & Amari, S. (1994). Network information criterions -determining the number of parameters for an artificial neural network model. IEEE Trans. on Neural Networks, 5, 865-872.
-
(1994)
IEEE Trans. on Neural Networks
, vol.5
, pp. 865-872
-
-
Murata, N.1
Yoshizawa, S.2
Amari, S.3
-
12
-
-
0031151347
-
Symmetry breaking and training from incomplete data with radial basis Boltzmann machines
-
Nijman, M. J., & Kappen, H. J. (1997). Symmetry breaking and training from incomplete data with radial basis Boltzmann machines. International Journal of Neural Systems, 8, 301-316.
-
(1997)
International Journal of Neural Systems
, vol.8
, pp. 301-316
-
-
Nijman, M.J.1
Kappen, H.J.2
-
13
-
-
0025490985
-
Networks for approximation and learning
-
Poggio, T., & Girosi, F. (1990). Networks for approximation and learning. Proceedings of the IEEE, 78, 1481-1497.
-
(1990)
Proceedings of the IEEE
, vol.78
, pp. 1481-1497
-
-
Poggio, T.1
Girosi, F.2
-
14
-
-
0000318553
-
Stochastic complexity and modeling
-
Rissanen, J. (1986). Stochastic complexity and modeling. Annals of Statistics, 14, 1080-1100.
-
(1986)
Annals of Statistics
, vol.14
, pp. 1080-1100
-
-
Rissanen, J.1
-
15
-
-
0000389568
-
Statistical mechanics of phase transitions in clustering
-
Rose, K., Gurewitz, E., & Fox, G. (1990). Statistical mechanics of phase transitions in clustering. Physical Review Letters, 65, 945-948.
-
(1990)
Physical Review Letters
, vol.65
, pp. 945-948
-
-
Rose, K.1
Gurewitz, E.2
Fox, G.3
|