-
1
-
-
0001455497
-
-
For reviews, see: a, De Mayo, P, Ed, Academic Press: New York
-
For reviews, see: (a) Nastasi, M.; Streith, J. In Rearrangements in Ground and Excited States; De Mayo, P., Ed.; Academic Press: New York, 1980; Vol. 3, p 445.
-
(1980)
Rearrangements in Ground and Excited States
, vol.3
, pp. 445
-
-
Nastasi, M.1
Streith, J.2
-
2
-
-
0000397050
-
-
De Mayo, P, Ed, Academic Press: New York
-
(b) Padwa, A. In Rearrangements in Ground and Excited States; De Mayo, P., Ed.; Academic Press: New York, 1980; Vol. 3, p 501.
-
(1980)
Rearrangements in Ground and Excited States
, vol.3
, pp. 501
-
-
Padwa, A.1
-
6
-
-
0003655201
-
-
For instance, see: a, Prentice Hall: London
-
For instance, see: (a) McGlynn, S. P.; Azumi, T.; Kinoshita, M. Molecular Spectroscopy of the Triplet State; Prentice Hall: London, 1969.
-
(1969)
Molecular Spectroscopy of the Triplet State
-
-
McGlynn, S.P.1
Azumi, T.2
Kinoshita, M.3
-
11
-
-
0033597604
-
-
(a) Pavlik, J. W.; Kebede, N.; Thompson, M.; Day, A. C.; Barltrop, J. A. J. Am. Chem. Soc. 1999, 121, 5666.
-
(1999)
J. Am. Chem. Soc
, vol.121
, pp. 5666
-
-
Pavlik, J.W.1
Kebede, N.2
Thompson, M.3
Day, A.C.4
Barltrop, J.A.5
-
12
-
-
0035805239
-
-
(b) Cao, Z.; Zhang, Q.; Peyerimhoff, S. D. Chem. Eur. J. 2001, 7, 1927.
-
(2001)
Chem. Eur. J
, vol.7
, pp. 1927
-
-
Cao, Z.1
Zhang, Q.2
Peyerimhoff, S.D.3
-
16
-
-
33847063421
-
-
A recent study of femtosecond dynamics as well as theoretical calculations of pyridine by Zewail and Chachisvilis explored the photochemical dynamics of the S2(π, π*) excited state leading to the formation of the azaprefulvene isomer. Also, they found that the reaction path on the S2(π, π*) potential energy surface was the lowest path for the formation of the azaprefulvene isomer at the CASSCF level. See ref 2e. We are therefore confident that a pyridine species with biradical character, originating from the excited state S2π, π*, should be a precursor in the interversion of the pyridine
-
2(π - π*), should be a precursor in the interversion of the pyridine.
-
-
-
-
17
-
-
85005688736
-
-
For recently excellent reviews, see: a
-
For recently excellent reviews, see: (a) Bernardi, F.; Olivucci, M.; Robb, M. A. Isr. J. Chem. 1993, 265.
-
(1993)
Isr. J. Chem
, pp. 265
-
-
Bernardi, F.1
Olivucci, M.2
Robb, M.A.3
-
20
-
-
0031591345
-
-
(d) Bernardi, F.; Olivucci, M.; Robb, M. A. J. Photochem. Photobio. A: Chem. 1997, 105, 365.
-
(1997)
J. Photochem. Photobio. A: Chem
, vol.105
, pp. 365
-
-
Bernardi, F.1
Olivucci, M.2
Robb, M.A.3
-
22
-
-
43949151212
-
-
(a) Bearpark, M. J.; Robb, M. A.; Schlegel, H. B. Chem. Phys. Lett. 1994, 223, 269.
-
(1994)
Chem. Phys. Lett
, vol.223
, pp. 269
-
-
Bearpark, M.J.1
Robb, M.A.2
Schlegel, H.B.3
-
23
-
-
33847071159
-
-
For more details, see ref, 6c and references therein
-
(b) For more details, see ref. (6c) and references therein.
-
-
-
-
24
-
-
33847026776
-
-
Frisch, M. J, Trucks, G. W, Schlegel, H. B, Scuseria, G. E, Robb, M. A, Cheeseman, J. R, Zakrzewski, V. G, Montgomery, J. A, Jr, Stratmann, R. E, Burant, J. C, Dapprich, S, Millam, J. M, Daniels, A. D, Kudin, K. N, Strain, M. C, Farkas, O, Tomasi, J, Barone, V, Cossi, M, Cammi, R, Mennucci, B, Pomelli, C, Adamo, C, Clifford, S, Ochterski, J, Petersson, G. A, Ayala, P. Y, Cui, Q, Morokuma, K, Malick, D. K, Rabuck, A. D, Raghavachari, K, Foresman, J. B, Cioslowski, J, Ortiz, J. V, Baboul, A. G, Stefanov, B. B, Liu, Liashenko, G, Piskorz, A, Komaromi, P, I, Gomperts, R, Martin, R. L, Fox, D. J, Keith, T, Al-Laham, M. A, Peng, C. Y, Nanayakkara, A, Gonzalez, C, Challacombe, M, Gill, P. M. W, Johnson, B, Chen, W, Wong, M. W, Andres, J. L, Gonzalez, C, Head-Gordon, M, Replogle, E. S, Pople, J. A. Gaussian, Inc, Pittsburgh, PA, 2003
-
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, Liashenko, G.; Piskorz, A.; Komaromi, P.; I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian, Inc.: Pittsburgh, PA, 2003.
-
-
-
-
27
-
-
33847012936
-
-
According to the results outlined in Figure 2, funneling through 82/80 CI (i.e., CI-A and CI-B) leads to two different reaction paths on the ground-state surface, via either the derivative coupling vector or the gradient difference vector. For instance, the gradient difference vector for CI-A corresponds to an antisymmetric bending motion, which may lead to a vibrationally hot species at the So configuration. On the other hand, its derivative coupling vector corresponds to the intramolecular formation of a Dewar pyridine, 2. Besides these, again, the derivative coupling vector for Cl-B can lead to the isomer 3, whereas its gradient difference vector may result in a vibrationally hot species at the So configuration.
-
According to the results outlined in Figure 2, funneling through 82/80 CI (i.e., CI-A and CI-B) leads to two different reaction paths on the ground-state surface, via either the derivative coupling vector or the gradient difference vector. For instance, the gradient difference vector for CI-A corresponds to an antisymmetric bending motion, which may lead to a vibrationally hot species at the So configuration. On the other hand, its derivative coupling vector corresponds to the intramolecular formation of a Dewar pyridine, 2. Besides these, again, the derivative coupling vector for Cl-B can lead to the isomer 3, whereas its gradient difference vector may result in a vibrationally hot species at the So configuration.
-
-
-
-
28
-
-
33847082429
-
-
2/ So CI (i.e., CI-C and CI-D) leads to two different reaction paths on the ground-state surface, via either the derivative coupling vector or the gradient difference vector. For example, the gradient difference vector for CI-C can lead to a vibrationally hot species at the So configuration, whereas its derivative coupling vector can result in an isomer, 5. Likewise, the same situation can also be found in the left-hand side of Figure 4; that is, the gradient difference vector for CI-D can result in a vibrationally hot species at the So configuration, and its derivative coupling vector can lead to an isomer, 6.
-
2/ So CI (i.e., CI-C and CI-D) leads to two different reaction paths on the ground-state surface, via either the derivative coupling vector or the gradient difference vector. For example, the gradient difference vector for CI-C can lead to a vibrationally hot species at the So configuration, whereas its derivative coupling vector can result in an isomer, 5. Likewise, the same situation can also be found in the left-hand side of Figure 4; that is, the gradient difference vector for CI-D can result in a vibrationally hot species at the So configuration, and its derivative coupling vector can lead to an isomer, 6.
-
-
-
-
29
-
-
84985557558
-
-
Blatter, K.; Rosch, W.; Vogelbacher, U.-J.; Fink. J.; Regitz, M. Angew. Chem., Int. Ed. Engl. 1987, 26, 85.
-
(1987)
Angew. Chem., Int. Ed. Engl
, vol.26
, pp. 85
-
-
Blatter, K.1
Rosch, W.2
Vogelbacher, U.-J.3
Fink, J.4
Regitz, M.5
-
30
-
-
33847023423
-
-
0 CI (i.e., CI-E and CI-F) leads to two different reaction paths on the ground-state surface, via either the derivative coupling vector or the gradient difference vector. The derivative coupling vector for CI-E can lead to a vibrationally hot species at the So configuration. However, its gradient difference vector can result in a Dewar isomer, 8. Similarly, the gradient difference vector for CI-F can lead to vibrationally hot species at the So configuration, and its derivative coupling vector can lead to an isomer, 9.
-
0 CI (i.e., CI-E and CI-F) leads to two different reaction paths on the ground-state surface, via either the derivative coupling vector or the gradient difference vector. The derivative coupling vector for CI-E can lead to a vibrationally hot species at the So configuration. However, its gradient difference vector can result in a Dewar isomer, 8. Similarly, the gradient difference vector for CI-F can lead to vibrationally hot species at the So configuration, and its derivative coupling vector can lead to an isomer, 9.
-
-
-
-
31
-
-
0004200260
-
-
6th ed, Thomson: New York
-
Mcmurry, J. In Organic Chemistry, 6th ed.; Thomson: New York, 2004; pp 895-896.
-
(2004)
Organic Chemistry
, pp. 895-896
-
-
Mcmurry, J.1
-
32
-
-
33847045914
-
-
Unpublished results
-
Su, M.-D. Unpublished results.
-
-
-
Su, M.-D.1
-
33
-
-
0001492432
-
-
For more details, see
-
For more details, see: Su, M.-D. J. Phys. Chem. 1996, 100, 4339.
-
(1996)
J. Phys. Chem
, vol.100
, pp. 4339
-
-
Su, M.-D.1
|