-
3
-
-
0033580290
-
-
Marx, D.; Tuckerman, M. E.; Hutter, J.; Parrinello, M. Nature 1999, 397, 601.
-
(1999)
Nature
, vol.397
, pp. 601
-
-
Marx, D.1
Tuckerman, M.E.2
Hutter, J.3
Parrinello, M.4
-
6
-
-
0005538815
-
-
Cho, M.; Fleming, G. R.; Saito, S.; Ohmine, I.; Stratt, R. M. J. Chem. Phys. 1994, 100, 6672.
-
(1994)
J. Chem. Phys
, vol.100
, pp. 6672
-
-
Cho, M.1
Fleming, G.R.2
Saito, S.3
Ohmine, I.4
Stratt, R.M.5
-
11
-
-
2342558053
-
-
Wernet, P.; et al. Science 2004, 304, 995.
-
(2004)
Science
, vol.304
, pp. 995
-
-
Wernet, P.1
-
12
-
-
7444231098
-
-
Smith, J. D.; Cappa, C. D.; Wilson, K. R.; Messer, B. M.; Cohen, R. C.; Saykally, R. J. Science 2004, 306, 851.
-
(2004)
Science
, vol.306
, pp. 851
-
-
Smith, J.D.1
Cappa, C.D.2
Wilson, K.R.3
Messer, B.M.4
Cohen, R.C.5
Saykally, R.J.6
-
15
-
-
0037436964
-
-
Pakoulev, A.; Wang, Z.; Dlott, D. Chem. Phys. Lett. 2003, 371, 594.
-
(2003)
Chem. Phys. Lett
, vol.371
, pp. 594
-
-
Pakoulev, A.1
Wang, Z.2
Dlott, D.3
-
16
-
-
15044356423
-
-
Cowan, M. L.; Bruner, B. D.; Huse, N.; Dwyer, J. R.; Chugh, B.; Nibbering, E. T. J.; Elsaesser, T.; Miller, R. J. D. Nature 2005, 434, 199.
-
(2005)
Nature
, vol.434
, pp. 199
-
-
Cowan, M.L.1
Bruner, B.D.2
Huse, N.3
Dwyer, J.R.4
Chugh, B.5
Nibbering, E.T.J.6
Elsaesser, T.7
Miller, R.J.D.8
-
17
-
-
33646827833
-
-
Ashihara, S.; Huse. N.; Espagne, A.; Nibbering, E. T. J.; Elsaesser, T. Chem. Phys. Lett. 2006, 424, 66.
-
(2006)
Chem. Phys. Lett
, vol.424
, pp. 66
-
-
Ashihara, S.1
Huse, N.2
Espagne, A.3
Nibbering, E.T.J.4
Elsaesser, T.5
-
19
-
-
2342635191
-
-
Rey, R.; Møller, K. B.; Hynes, J. T. Chem. Rev. 2004, 104, 1915.
-
(2004)
Chem. Rev
, vol.104
, pp. 1915
-
-
Rey, R.1
Møller, K.B.2
Hynes, J.T.3
-
23
-
-
0000918623
-
-
Castner, E. W., Jr.; Chang, Y. J.; Chu, Y. C.; Walrafen, G. E. J. Chem. Phys. 1995, 102, 653.
-
(1995)
J. Chem. Phys
, vol.102
, pp. 653
-
-
Castner Jr., E.W.1
Chang, Y.J.2
Chu, Y.C.3
Walrafen, G.E.4
-
24
-
-
0036836388
-
-
Tassaing, T.; Danten, Y.; Besnard, M. J. Mol. Liq. 2002, 101, 149.
-
(2002)
J. Mol. Liq
, vol.101
, pp. 149
-
-
Tassaing, T.1
Danten, Y.2
Besnard, M.3
-
26
-
-
28844476847
-
-
Sharma, M.; Resta, R.; Car, R. Phys. Rev. Lett. 2005, 95, 187401.
-
(2005)
Phys. Rev. Lett
, vol.95
, pp. 187401
-
-
Sharma, M.1
Resta, R.2
Car, R.3
-
27
-
-
33845279744
-
-
Walrafen, G. E.; Hokmabadi, M. S.; Yang, W. H. J. Phys. Chem. 1988, 92, 2433.
-
(1988)
J. Phys. Chem
, vol.92
, pp. 2433
-
-
Walrafen, G.E.1
Hokmabadi, M.S.2
Yang, W.H.3
-
28
-
-
0035249261
-
-
Devlin, J. P.; Sadlej, J.; Buch, V. J. Phys. Chem. A 2001, 105, 974.
-
(2001)
J. Phys. Chem. A
, vol.105
, pp. 974
-
-
Devlin, J.P.1
Sadlej, J.2
Buch, V.3
-
29
-
-
33847069559
-
-
The width of the cross-correlation measured with a thin semiconductor layer is mainly determined by the 840 cm-1 probe pulses and the same for the three excitation conditions
-
-1 probe pulses and the same for the three excitation conditions.
-
-
-
-
30
-
-
33847064226
-
-
Changes of OH bending absorption upon weakening of hydrogen bonds are minor (cf. Bertie, J. E, Ahmed, M. K, Eysel, H. H. J. Phys. Chem. 1989, 93, 2210, Thus, sub-100 fs kinetics are absent in the ultrafast OH bending response Figure 4a
-
Changes of OH bending absorption upon weakening of hydrogen bonds are minor (cf. Bertie, J. E.; Ahmed, M. K.; Eysel, H. H. J. Phys. Chem. 1989, 93, 2210). Thus, sub-100 fs kinetics are absent in the ultrafast OH bending response (Figure 4a).
-
-
-
-
31
-
-
33847027652
-
-
The final temperature rise is proportional to the pump energy deposited in the sample and reaches values of 1-5 K for our excitation conditions. The absence of local overheating is evident from the monotonous increase of the frequency shifts
-
The final temperature rise is proportional to the pump energy deposited in the sample and reaches values of 1-5 K for our excitation conditions. The absence of local overheating is evident from the monotonous increase of the frequency shifts.
-
-
-
-
32
-
-
33847018032
-
-
The sequential energy transfer to librations rules out other schemes proposed for OH stretching relaxation, in particular the generation of two OH bending quanta on different molecules (Lindner, J, et al. Chem. Phys. Lett. 2006, 421, 329, An L2 kinetics calculated for the latter case (Figure 3d) is in clear disagreement with the data
-
The sequential energy transfer to librations rules out other schemes proposed for OH stretching relaxation, in particular the generation of two OH bending quanta on different molecules (Lindner, J.; et al. Chem. Phys. Lett. 2006, 421, 329). An L2 kinetics calculated for the latter case (Figure 3d) is in clear disagreement with the data.
-
-
-
|