메뉴 건너뛰기




Volumn 39, Issue , 2007, Pages 193-215

Thermofluid modeling of fuel cells

Author keywords

Diffusion slip; PEMFC modeling; SOFC modeling; Stack modeling

Indexed keywords

COMPUTATIONAL FLUID DYNAMICS; FABRICATION; FLOW OF FLUIDS; HYDROGEN; OXYGEN;

EID: 33846813719     PISSN: 00664189     EISSN: None     Source Type: Book Series    
DOI: 10.1146/annurev.fluid.39.050905.110304     Document Type: Review
Times cited : (24)

References (74)
  • 1
    • 0028408049 scopus 로고
    • Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack
    • Achenbach E. 1994. Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack. J. Power Sources 49:333-48
    • (1994) J. Power Sources , vol.49 , pp. 333-348
    • Achenbach, E.1
  • 2
    • 0028712672 scopus 로고
    • Methane/steam reforming kinetics for solid oxide fuel cells
    • Achenbach E, Riensche E. 1994. Methane/steam reforming kinetics for solid oxide fuel cells. J. Power Sources 52:283-88
    • (1994) J. Power Sources , vol.52 , pp. 283-288
    • Achenbach, E.1    Riensche, E.2
  • 3
  • 4
    • 8344242115 scopus 로고    scopus 로고
    • Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I. Model-based steady-state performance
    • Aguiar P, Adjiman CS, Brandon NP. 2004. Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I. Model-based steady-state performance. J. Power Sources 138:120-36
    • (2004) J. Power Sources , vol.138 , pp. 120-136
    • Aguiar, P.1    Adjiman, C.S.2    Brandon, N.P.3
  • 5
    • 0036574065 scopus 로고    scopus 로고
    • Modelling of an indirect internal reforming solid oxide fuel cell
    • Aguiar P, Chadwick D, Kerschenbaum L. 2002. Modelling of an indirect internal reforming solid oxide fuel cell. Chem. Eng. Sci. 57:1665-77
    • (2002) Chem. Eng. Sci. , vol.57 , pp. 1665-1677
    • Aguiar, P.1    Chadwick, D.2    Kerschenbaum, L.3
  • 6
    • 0034352331 scopus 로고    scopus 로고
    • Kinetics of internal steam reforming of methane on Ni/YSZ-based anodes for solid oxide fuel cells
    • Ahmed K, Foger K. 2000. Kinetics of internal steam reforming of methane on Ni/YSZ-based anodes for solid oxide fuel cells. Catal. Today 63:479-87
    • (2000) Catal. Today , vol.63 , pp. 479-487
    • Ahmed, K.1    Foger, K.2
  • 7
    • 0035977368 scopus 로고    scopus 로고
    • Approach to equilibrium of the water gas shift reaction on a Ni/zirconia anode under solid oxide fuel cell conditions
    • Ahmed K, Foger K. 2001. Approach to equilibrium of the water gas shift reaction on a Ni/zirconia anode under solid oxide fuel cell conditions. J. Power Sources 103:150-53
    • (2001) J. Power Sources , vol.103 , pp. 150-153
    • Ahmed, K.1    Foger, K.2
  • 9
    • 0029138713 scopus 로고
    • Dynamic transport of multicomponent mixtures of gases in porous solids
    • Arnost D, Schneider P. 1995. Dynamic transport of multicomponent mixtures of gases in porous solids. Chem. Eng. J. 57:91-99
    • (1995) Chem. Eng. J. , vol.57 , pp. 91-99
    • Arnost, D.1    Schneider, P.2
  • 10
    • 27744536256 scopus 로고    scopus 로고
    • Numerical simulation of gaseous mixture flow in porous electrodes for PEM fuel cells by the Lattice Boltzmann method
    • Eng. Technol., ASME Pap. FUELCELL 2005-74046, May, Ypsilanti, MI
    • Asinari P, Coppo M, von Spakovsky MR, Kasula BV. 2005. Numerical simulation of gaseous mixture flow in porous electrodes for PEM fuel cells by the Lattice Boltzmann method. Proc. Third Int. Conf. Fuel Cell Sci., Eng. Technol., ASME Pap. FUELCELL 2005-74046, May, Ypsilanti, MI
    • (2005) Proc. Third Int. Conf. Fuel Cell Sci.
    • Asinari, P.1    Coppo, M.2    von Spakovsky, M.R.3    Kasula, B.V.4
  • 11
    • 33846824907 scopus 로고
    • Research into the properties of the hydrogen-oxygen fuel cell
    • Bacon FT. 1954. Research into the properties of the hydrogen-oxygen fuel cell. BEAMA J. 6:61-67
    • (1954) BEAMA J. , vol.6 , pp. 61-67
    • Bacon, F.T.1
  • 12
    • 18844374467 scopus 로고    scopus 로고
    • Flow distribution in a bipolar plate of a proton exchange membrane fuel cell: Experiments and numerical simulation studies
    • Barreras F, Lozano A, Valiñio L, Marín C, Pascau A. 2005. Flow distribution in a bipolar plate of a proton exchange membrane fuel cell: experiments and numerical simulation studies. J. Power Sources 144:54-66
    • (2005) J. Power Sources , vol.144 , pp. 54-66
    • Barreras, F.1    Lozano, A.2    Valiñio, L.3    Marín, C.4    Pascau, A.5
  • 13
    • 0026204251 scopus 로고
    • Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte
    • Bernardi DM, Verbrugge MW. 1991. Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte. AIChE, J. 37:1151-63
    • (1991) AIChE, J. , vol.37 , pp. 1151-1163
    • Bernardi, D.M.1    Verbrugge, M.W.2
  • 14
    • 0026914911 scopus 로고
    • A mathematical model for the solid-polymer-electrode fuel cell
    • Bernardi DM, Verbrugge MW. 1992. A mathematical model for the solid-polymer-electrode fuel cell. J. Electrochem. Soc. 139:2477-91
    • (1992) J. Electrochem. Soc. , vol.139 , pp. 2477-2491
    • Bernardi, D.M.1    Verbrugge, M.W.2
  • 15
    • 33846787446 scopus 로고    scopus 로고
    • The Birth of the Fuel Cell, 1835-1845
    • Oberrohrdorf, Switz
    • Bossel U. 2000. The Birth of the Fuel Cell, 1835-1845. Eur. Fuel Cell Forum, Oberrohrdorf, Switz.
    • (2000) Eur. Fuel Cell Forum
    • Bossel, U.1
  • 16
  • 17
    • 2042441767 scopus 로고    scopus 로고
    • Definition and sensitivity of a finite volume SOFC model for a tubular cell geometry
    • Campanari S, Iora P. 2004. Definition and sensitivity of a finite volume SOFC model for a tubular cell geometry. J. Power Sources 132:113-26
    • (2004) J. Power Sources , vol.132 , pp. 113-126
    • Campanari, S.1    Iora, P.2
  • 18
    • 0035253141 scopus 로고    scopus 로고
    • A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness
    • Chan SH, Khor KA, Xia ZT. 2001. A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness. J. Power Sources 93:130-40
    • (2001) J. Power Sources , vol.93 , pp. 130-140
    • Chan, S.H.1    Khor, K.A.2    Xia, Z.T.3
  • 19
    • 0000178374 scopus 로고    scopus 로고
    • Anode micro model of solid oxide fuel cell
    • Chan SH, Xia ZT. 2001. Anode micro model of solid oxide fuel cell. J. Electrochem. Soc. 148:A388-94
    • (2001) J. Electrochem. Soc. , vol.148
    • Chan, S.H.1    Xia, Z.T.2
  • 20
    • 23944490621 scopus 로고    scopus 로고
    • Review and comparison of approaches to proton exchange membrane fuel cell modelling
    • Cheddie D, Munroe N. 2005. Review and comparison of approaches to proton exchange membrane fuel cell modelling. J. Power Sources 147:72-84
    • (2005) J. Power Sources , vol.147 , pp. 72-84
    • Cheddie, D.1    Munroe, N.2
  • 21
    • 0035033852 scopus 로고    scopus 로고
    • Transport phenomena in polymeric membrane fuel cells
    • Costamagna P. 2001. Transport phenomena in polymeric membrane fuel cells. Chem. Eng. Sci. 56:323-32
    • (2001) Chem. Eng. Sci. , vol.56 , pp. 323-332
    • Costamagna, P.1
  • 23
    • 2942714863 scopus 로고    scopus 로고
    • Electrochemical model of the integrated planar solid oxide fuel cell
    • Costamagna P, Selimovic A, Del Borghi M, Agnew G. 2004. Electrochemical model of the integrated planar solid oxide fuel cell. Chem. Eng. J. 102:61-69
    • (2004) Chem. Eng. J. , vol.102 , pp. 61-69
    • Costamagna, P.1    Selimovic, A.2    Del Borghi, M.3    Agnew, G.4
  • 24
    • 17644412330 scopus 로고    scopus 로고
    • Radiation heat treansfer in SOFC materials and components
    • Damm DL, Fedorov AG. 2005. Radiation heat treansfer in SOFC materials and components. J. Power Sources 143:158-65
    • (2005) J. Power Sources , vol.143 , pp. 158-165
    • Damm, D.L.1    Fedorov, A.G.2
  • 25
    • 0033879734 scopus 로고    scopus 로고
    • Intrinsic reaction kinetics of methane reforming on a nickel/zirconia anode
    • Dicks AL, Pointon KD, Siddle A. 2000. Intrinsic reaction kinetics of methane reforming on a nickel/zirconia anode. J. Power Sources 86:523-30
    • (2000) J. Power Sources , vol.86 , pp. 523-530
    • Dicks, A.L.1    Pointon, K.D.2    Siddle, A.3
  • 26
    • 0001121514 scopus 로고
    • Interdiffusion of gases in a low permeability graphite at uniform pressure gradients
    • Evans RB, Watson GM, Truitt J. 1962. Interdiffusion of gases in a low permeability graphite at uniform pressure gradients. J. Appl. Phys. 33:2682-88
    • (1962) J. Appl. Phys. , vol.33 , pp. 2682-2688
    • Evans, R.B.1    Watson, G.M.2    Truitt, J.3
  • 27
    • 0001439791 scopus 로고
    • Interdiffusion of gases in a low permeability graphite. II. Influence of pressure gradients
    • Evans RB, Watson GM, Truitt J. 1963. Interdiffusion of gases in a low permeability graphite. II. Influence of pressure gradients. J. Appl. Phys. 34:2020-26
    • (1963) J. Appl. Phys. , vol.34 , pp. 2020-2026
    • Evans, R.B.1    Watson, G.M.2    Truitt, J.3
  • 28
    • 0030074233 scopus 로고    scopus 로고
    • Three-dimensional numerical simulation for various geometries of solid oxide fuel cells
    • Ferguson JR, Fiard JM, Herbin R. 1996. Three-dimensional numerical simulation for various geometries of solid oxide fuel cells. J. Power Sources 58:109-22
    • (1996) J. Power Sources , vol.58 , pp. 109-122
    • Ferguson, J.R.1    Fiard, J.M.2    Herbin, R.3
  • 29
    • 0027593352 scopus 로고
    • Water and thermal management model for proton-exchange membrane fuel cells
    • Fuller TE, Newman J. 1993. Water and thermal management model for proton-exchange membrane fuel cells. J. Electrochem. Soc. 140:1218-25
    • (1993) J. Electrochem. Soc. , vol.140 , pp. 1218-1225
    • Fuller, T.E.1    Newman, J.2
  • 32
    • 2342544276 scopus 로고    scopus 로고
    • Carbon deposition behavior on Ni-ScSZ anodes for internal reforming solid oxide fuel cells
    • Gunji A, Wen C, Otomo J, Kobayashi T, Ukai K. et al. 2004. Carbon deposition behavior on Ni-ScSZ anodes for internal reforming solid oxide fuel cells. J. Power Sources 131:285-88
    • (2004) J. Power Sources , vol.131 , pp. 285-288
    • Gunji, A.1    Wen, C.2    Otomo, J.3    Kobayashi, T.4    Ukai, K.5
  • 33
    • 0032467782 scopus 로고    scopus 로고
    • Two-dimensional model for proton exchange membrane fuel cells
    • Gurau V, Liu H, Kakac S. 1998. Two-dimensional model for proton exchange membrane fuel cells. AIChE J. 44:2410-22
    • (1998) AIChE J. , vol.44 , pp. 2410-2422
    • Gurau, V.1    Liu, H.2    Kakac, S.3
  • 34
    • 33845777105 scopus 로고    scopus 로고
    • Three-dimensional simulation of an integrated-planar solid oxide fuel cell
    • PhD thesis. Cambridge Univ. Eng. Dep
    • Haberman BA. 2005. Three-dimensional simulation of an integrated-planar solid oxide fuel cell. PhD thesis. Cambridge Univ. Eng. Dep.
    • (2005)
    • Haberman, B.A.1
  • 35
    • 2942707617 scopus 로고    scopus 로고
    • Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell
    • Haberman BA, Young JB. 2004. Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell. Int. J. Heat Mass Transfer 47:3617-29
    • (2004) Int. J. Heat Mass Transfer , vol.47 , pp. 3617-3629
    • Haberman, B.A.1    Young, J.B.2
  • 36
    • 27844543851 scopus 로고    scopus 로고
    • Numerical investigation of the air flow through a bundle of IP-SOFC modules
    • Haberman BA, Young JB. 2005. Numerical investigation of the air flow through a bundle of IP-SOFC modules. Int. J. Heat Mass Transfer 48:5475-87
    • (2005) Int. J. Heat Mass Transfer , vol.48 , pp. 5475-5487
    • Haberman, B.A.1    Young, J.B.2
  • 37
    • 33748994822 scopus 로고    scopus 로고
    • Diffusion and chemical reaction in the porous structures of solid oxide fuel cells
    • Haberman BA, Young JB. 2006. Diffusion and chemical reaction in the porous structures of solid oxide fuel cells. ASAME J. Fuel Cell Sci. Technol. 3:312-21
    • (2006) ASAME J. Fuel Cell Sci. Technol. , vol.3 , pp. 312-321
    • Haberman, B.A.1    Young, J.B.2
  • 38
    • 0037573021 scopus 로고    scopus 로고
    • Optimization of flow-field in polymer electrolyte membrane fuel cells using computational fluid dynamics techniques
    • Hontañón E, Escudero MJ, Bautista C, Garcia-Ybarra P, Daza L. 2000. Optimization of flow-field in polymer electrolyte membrane fuel cells using computational fluid dynamics techniques. J. Power Sources 86:363-68
    • (2000) J. Power Sources , vol.86 , pp. 363-368
    • Hontañón, E.1    Escudero, M.J.2    Bautista, C.3    Garcia-Ybarra, P.4    Daza, L.5
  • 39
    • 0000886410 scopus 로고
    • Diffusion in porous catalysts and adsorbents
    • Hoogschagen J. 1955. Diffusion in porous catalysts and adsorbents. Ind. Eng. Chem. 47:906-13
    • (1955) Ind. Eng. Chem. , vol.47 , pp. 906-913
    • Hoogschagen, J.1
  • 40
    • 10644281004 scopus 로고    scopus 로고
    • Electro-osmotic flow through polymer electrolyte membranes in PEM fuel cells
    • Karimi G, Li X. 2005. Electro-osmotic flow through polymer electrolyte membranes in PEM fuel cells. J. Power Sources 140:1-11
    • (2005) J. Power Sources , vol.140 , pp. 1-11
    • Karimi, G.1    Li, X.2
  • 41
    • 0030299406 scopus 로고    scopus 로고
    • A modified Maxwell-Stefan model for transport through inert membranes: The binary friction model
    • Kerkhof PJAM. 1996. A modified Maxwell-Stefan model for transport through inert membranes: the binary friction model. Chem. Eng. J. 64:319-43
    • (1996) Chem. Eng. J. , vol.64 , pp. 319-343
    • Kerkhof, P.J.A.M.1
  • 43
    • 0032759727 scopus 로고    scopus 로고
    • Polarization effects in intermediate temperature, anode-supported solid oxide fuel cells
    • Kim JW, Virkar AV, Fung KZ, Mehta K, Singhal SC. 1999. Polarization effects in intermediate temperature, anode-supported solid oxide fuel cells. J. Electrochem. Soc. 146:69-78
    • (1999) J. Electrochem. Soc. , vol.146 , pp. 69-78
    • Kim, J.W.1    Virkar, A.V.2    Fung, K.Z.3    Mehta, K.4    Singhal, S.C.5
  • 44
    • 50349114749 scopus 로고
    • On the slip of a diffusing gas mixture along a wall
    • Kramers HA, Kistemaker J. 1943. On the slip of a diffusing gas mixture along a wall. Physica 10:699-713
    • (1943) Physica , vol.10 , pp. 699-713
    • Kramers, H.A.1    Kistemaker, J.2
  • 45
    • 0000285191 scopus 로고
    • An exact expression for the diffusion slip velocity in a binary gas mixture
    • Lang H, Loyalka SK. 1970. An exact expression for the diffusion slip velocity in a binary gas mixture. Phys. Fluids 13:1871-73
    • (1970) Phys. Fluids , vol.13 , pp. 1871-1873
    • Lang, H.1    Loyalka, S.K.2
  • 47
    • 0033901230 scopus 로고    scopus 로고
    • Modelling of gas transport phenomena in SOFC anodes
    • Lehnert W, Meusinger J, Thom F. 2000. Modelling of gas transport phenomena in SOFC anodes. J. Power Sources 87:57-63
    • (2000) J. Power Sources , vol.87 , pp. 57-63
    • Lehnert, W.1    Meusinger, J.2    Thom, F.3
  • 48
    • 0344497395 scopus 로고    scopus 로고
    • Simulation of the chemical/electrochemical reactions and heat/mass transfer for a tubular SOFC stack
    • Li PW, Chyu MK. 2003. Simulation of the chemical/electrochemical reactions and heat/mass transfer for a tubular SOFC stack. J. Power Sources 124:487-98
    • (2003) J. Power Sources , vol.124 , pp. 487-498
    • Li, P.W.1    Chyu, M.K.2
  • 49
    • 30144443839 scopus 로고    scopus 로고
    • Numerical study of a flat-tube high power density solid oxide fuel cell. Part II: Cell performance and stack optimization
    • Lu Y, Schaefer L. 2006. Numerical study of a flat-tube high power density solid oxide fuel cell. Part II: Cell performance and stack optimization. J. Power Sources 153:68-75
    • (2006) J. Power Sources , vol.153 , pp. 68-75
    • Lu, Y.1    Schaefer, L.2
  • 50
    • 11844256921 scopus 로고    scopus 로고
    • Numerical study of a flat-tube high power density solid oxide fuel cell. Part I: Heat/mass transfer and fluid flow
    • Lu Y, Schaefer L, Li P. 2005. Numerical study of a flat-tube high power density solid oxide fuel cell. Part I: Heat/mass transfer and fluid flow. J. Power Sources 140:331-39
    • (2005) J. Power Sources , vol.140 , pp. 331-339
    • Lu, Y.1    Schaefer, L.2    Li, P.3
  • 52
    • 8344261371 scopus 로고    scopus 로고
    • Pressure losses in laminar flow through serpentine channels in fuel cell stacks
    • Maharudrayya S, Jayanti S, Deshpande AP. 2004. Pressure losses in laminar flow through serpentine channels in fuel cell stacks. J. Power Sources 13 8:1-13
    • (2004) J. Power Sources , vol.13 , Issue.8 , pp. 1-13
    • Maharudrayya, S.1    Jayanti, S.2    Deshpande, A.P.3
  • 53
    • 0001176125 scopus 로고
    • Gas Transport in Porous Media: The Dusty-Gas Model
    • Amsterdam: Elsevier
    • Mason EA, Malinauskas AP. 1983. Gas Transport in Porous Media: The Dusty-Gas Model. Chem. Eng. Monogr. 17. Amsterdam: Elsevier
    • (1983) Chem. Eng. Monogr. , pp. 17
    • Mason, E.A.1    Malinauskas, A.P.2
  • 54
    • 0035479891 scopus 로고    scopus 로고
    • Numerical analysis of output characteristics of tubular SOFC with internal reformer
    • Nagata S, Momma A, Kato T, Kasuga Y. 2001. Numerical analysis of output characteristics of tubular SOFC with internal reformer. J. Power Sources 101:60-71
    • (2001) J. Power Sources , vol.101 , pp. 60-71
    • Nagata, S.1    Momma, A.2    Kato, T.3    Kasuga, Y.4
  • 55
    • 0027641089 scopus 로고
    • A water and thermal management model for proton-exchange-membrane fuel cells
    • Nguyen TV, White RE. 1993. A water and thermal management model for proton-exchange-membrane fuel cells. J. Electrochem. Soc. 140:2178-86
    • (1993) J. Electrochem. Soc. , vol.140 , pp. 2178-2186
    • Nguyen, T.V.1    White, R.E.2
  • 56
    • 28044468212 scopus 로고    scopus 로고
    • Water behavior in serpentine microchannel for proton exchange membrane fuel cell cathode
    • Quan P, Zhou B, Sobiesiak A, Liu Z. 2005. Water behavior in serpentine microchannel for proton exchange membrane fuel cell cathode. J. Power Sources 152:131-45
    • (2005) J. Power Sources , vol.152 , pp. 131-145
    • Quan, P.1    Zhou, B.2    Sobiesiak, A.3    Liu, Z.4
  • 57
    • 84984088970 scopus 로고
    • Gaseous counterdiffusion in catalyst pellets
    • Rothwell LB. 1963. Gaseous counterdiffusion in catalyst pellets. AIChE J. 9:19-24
    • (1963) AIChE J. , vol.9 , pp. 19-24
    • Rothwell, L.B.1
  • 58
    • 0018061172 scopus 로고
    • Multicomponent isothermal diffusion and forced flow of gases in capillaries
    • Schneider P. 1978. Multicomponent isothermal diffusion and forced flow of gases in capillaries. Chem. Eng. Sci. 33:1311-19
    • (1978) Chem. Eng. Sci. , vol.33 , pp. 1311-1319
    • Schneider, P.1
  • 59
    • 7244245545 scopus 로고    scopus 로고
    • Velocity slip and temperature jump coefficients for gaseous mixtures. III. Diffusion slip coefficient
    • Sharipov F, Kalempa D. 2004. Velocity slip and temperature jump coefficients for gaseous mixtures. III. Diffusion slip coefficient. Phys. Fluids 16:3779-85
    • (2004) Phys. Fluids , vol.16 , pp. 3779-3785
    • Sharipov, F.1    Kalempa, D.2
  • 60
    • 4043163602 scopus 로고    scopus 로고
    • Singhal SC, Kendall K, eds. Oxford, UK: Elsevier
    • Singhal SC, Kendall K, eds. 2003. Solid Oxide Fuel Cells. Oxford, UK: Elsevier
    • (2003) Solid Oxide Fuel Cells
  • 61
    • 0027755047 scopus 로고
    • Modelling and experimental diagnostics in polymer electrolyte fuel cells
    • Springer TE, Wilson MS, Zawodzinsld TA. 1993. Modelling and experimental diagnostics in polymer electrolyte fuel cells. J. Electrochem. Soc. 140:3513-26
    • (1993) J. Electrochem. Soc. , vol.140 , pp. 3513-3526
    • Springer, T.E.1    Wilson, M.S.2    Zawodzinsld, T.A.3
  • 63
    • 17644378711 scopus 로고    scopus 로고
    • PEM fuel cell performance and its two-phase mass transport
    • Sun H, Liu H, Gou J. 2005. PEM fuel cell performance and its two-phase mass transport. J. Power Sources 143:125-35
    • (2005) J. Power Sources , vol.143 , pp. 125-135
    • Sun, H.1    Liu, H.2    Gou, J.3
  • 64
    • 0037143414 scopus 로고    scopus 로고
    • Thermodynamic and transport properties of gases for use in solid oxide fuel cell modelling
    • Todd B, Young JB. 2002. Thermodynamic and transport properties of gases for use in solid oxide fuel cell modelling. J. Power Sources 110:186-200
    • (2002) J. Power Sources , vol.110 , pp. 186-200
    • Todd, B.1    Young, J.B.2
  • 65
    • 0346332978 scopus 로고    scopus 로고
    • Three-dimensional analysis of transport and electrochemical reactions in polymer electrolyte fuel cells
    • Um S, Wang CY. 2004. Three-dimensional analysis of transport and electrochemical reactions in polymer electrolyte fuel cells. J. Power Sources 125:40-51
    • (2004) J. Power Sources , vol.125 , pp. 40-51
    • Um, S.1    Wang, C.Y.2
  • 66
    • 23944466338 scopus 로고    scopus 로고
    • Simulation of flow and transport phenomena in a polymer electrolyte fuel cell under low-humidity operation
    • Wang Y, Wang CY. 2005. Simulation of flow and transport phenomena in a polymer electrolyte fuel cell under low-humidity operation. J. Power Sources 147:148-61
    • (2005) J. Power Sources , vol.147 , pp. 148-161
    • Wang, Y.1    Wang, C.Y.2
  • 67
    • 0035250720 scopus 로고    scopus 로고
    • Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells
    • Wang ZH, Wang CY, Chen KS. 2001. Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells. J. Power Sources 94:40-50
    • (2001) J. Power Sources , vol.94 , pp. 40-50
    • Wang, Z.H.1    Wang, C.Y.2    Chen, K.S.3
  • 68
    • 0024303638 scopus 로고
    • Methane steam reforming, methanation and water gas shift: 1. Intrinsic kinetics
    • Xu J, Froment GF. 1989. Methane steam reforming, methanation and water gas shift: 1. Intrinsic kinetics. AIChE J. 35:88-96
    • (1989) AIChE J. , vol.35 , pp. 88-96
    • Xu, J.1    Froment, G.F.2
  • 70
    • 0037007195 scopus 로고    scopus 로고
    • A two-phase flow and transport model for the cathode of PEM fuel cells
    • You L, Liu H. 2002. A two-phase flow and transport model for the cathode of PEM fuel cells. Int. J. Heat Mass Transfer 45:2277-87
    • (2002) Int. J. Heat Mass Transfer , vol.45 , pp. 2277-2287
    • You, L.1    Liu, H.2
  • 71
    • 27844596748 scopus 로고    scopus 로고
    • Modelling of multi-component gas flows in capillaries and porous solids
    • Young JB, Todd B. 2005. Modelling of multi-component gas flows in capillaries and porous solids. Int. J. Heat Mass Transfer 48:5338-53
    • (2005) Int. J. Heat Mass Transfer , vol.48 , pp. 5338-5353
    • Young, J.B.1    Todd, B.2
  • 72
    • 0037297260 scopus 로고    scopus 로고
    • Three-dimensional computational analysis of gas and heat transport phenomena in ducts relevant for anode-supported solid oxide fuel cells
    • Yuan J, Rokni M, Sunden B. 2003. Three-dimensional computational analysis of gas and heat transport phenomena in ducts relevant for anode-supported solid oxide fuel cells. Int. J. Heat Mass Transfer 46:809-21
    • (2003) Int. J. Heat Mass Transfer , vol.46 , pp. 809-821
    • Yuan, J.1    Rokni, M.2    Sunden, B.3
  • 74
    • 0037894113 scopus 로고    scopus 로고
    • A general three-dimensional model for proton exchange membrane fuel cells
    • Zhou T, Liu H. 2001. A general three-dimensional model for proton exchange membrane fuel cells. Int. J. Transport Phenomena 3:177-98
    • (2001) Int. J. Transport Phenomena , vol.3 , pp. 177-198
    • Zhou, T.1    Liu, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.