메뉴 건너뛰기




Volumn 16, Issue 6, 2006, Pages 1183-1200

Explicit examples of arbitrarily large analytic ergodic potentials with zero Lyapunov exponent

Author keywords

Lyapunov exponents; Quasi periodic; Reducibility; Schrodinger operators

Indexed keywords


EID: 33846813651     PISSN: 1016443X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00039-006-0581-8     Document Type: Article
Times cited : (19)

References (29)
  • 1
    • 23444433597 scopus 로고    scopus 로고
    • Positive Lyapunov exponent and minimality for a class of 1 - d quasi-periodic Schrödinger equations
    • K. BJERKLÖV, Positive Lyapunov exponent and minimality for a class of 1 - d quasi-periodic Schrödinger equations, Ergodic Theory Dynam. Systems 25:4 (2005), 1015-1045.
    • (2005) Ergodic Theory Dynam. Systems , vol.25 , Issue.4 , pp. 1015-1045
    • BJERKLÖV, K.1
  • 2
    • 33846782786 scopus 로고    scopus 로고
    • Dynamics of the quasi-periodic Schrödinger cocycle at the lowest energy in the spectrum
    • preprint
    • K. BJERKLÖV, Dynamics of the quasi-periodic Schrödinger cocycle at the lowest energy in the spectrum, preprint.
    • BJERKLÖV, K.1
  • 4
    • 0036934165 scopus 로고    scopus 로고
    • On the spectrum of lattice Schrödinger operators with deterministic potential, II (Dedicated to the memory of Tom Wolff)
    • J. BOURGAIN, On the spectrum of lattice Schrödinger operators with deterministic potential, II (Dedicated to the memory of Tom Wolff), J. Anal. Math. 88 (2002), 221-254.
    • (2002) J. Anal. Math , vol.88 , pp. 221-254
    • BOURGAIN, J.1
  • 5
    • 0034310141 scopus 로고    scopus 로고
    • On nonperturbative localization with quasi-periodic potential
    • J. BOURGAIN, M. GOLDSTEIN, On nonperturbative localization with quasi-periodic potential, Ann. of Math. (2) 152:3 (2000), 835-879.
    • (2000) Ann. of Math. (2) , vol.152 , Issue.3 , pp. 835-879
    • BOURGAIN, J.1    GOLDSTEIN, M.2
  • 6
    • 0035402419 scopus 로고    scopus 로고
    • Anderson localization for Schrödinger operators on ℤ with potentials given by the skew-shift
    • J. BOURGAIN, M. GOLDSTEIN, W. SCHLAG. Anderson localization for Schrödinger operators on ℤ with potentials given by the skew-shift, Comm. Math. Phys. 220:3 (2001), 583-621.
    • (2001) Comm. Math. Phys , vol.220 , Issue.3 , pp. 583-621
    • BOURGAIN, J.1    GOLDSTEIN, M.2    SCHLAG, W.3
  • 7
    • 0036016733 scopus 로고    scopus 로고
    • Absolutely continuous spectrum for 1D quasiperiodic operators
    • J. BOURGAIN, S. JITOMIRSKAYA, Absolutely continuous spectrum for 1D quasiperiodic operators, Invent. Math. 148:3 (2002), 453-463.
    • (2002) Invent. Math , vol.148 , Issue.3 , pp. 453-463
    • BOURGAIN, J.1    JITOMIRSKAYA, S.2
  • 9
    • 0001091673 scopus 로고
    • Almost periodic Schrödinger operators, III. The absolutely continuous spectrum in one dimension
    • P. DEIFT, B. SIMON, Almost periodic Schrödinger operators, III. The absolutely continuous spectrum in one dimension, Comm. Math. Phys. 90:3 (1983), 389-411.
    • (1983) Comm. Math. Phys , vol.90 , Issue.3 , pp. 389-411
    • DEIFT, P.1    SIMON, B.2
  • 10
    • 0002995943 scopus 로고
    • The rotation number for finite difference operators and its properties
    • F. DELYON, B. SOUILLARD, The rotation number for finite difference operators and its properties, Comm. Math. Phys. 89:3 (1983), 415-426.
    • (1983) Comm. Math. Phys , vol.89 , Issue.3 , pp. 415-426
    • DELYON, F.1    SOUILLARD, B.2
  • 11
    • 0001055893 scopus 로고
    • The one-dimesional Schrödinger equation with quasi-periodic potential, Funkt
    • E. DINABURG, Y. SINAI, The one-dimesional Schrödinger equation with quasi-periodic potential, Funkt. Anal, i Priloz. 9 (1975), 8-21.
    • (1975) Anal, i Priloz , vol.9 , pp. 8-21
    • DINABURG, E.1    SINAI, Y.2
  • 12
    • 0001401431 scopus 로고
    • Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation
    • L.H. ELIASSON, Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation, Comm. Math. Phys. 146:3 (1992), 447-482.
    • (1992) Comm. Math. Phys , vol.146 , Issue.3 , pp. 447-482
    • ELIASSON, L.H.1
  • 13
    • 0001699970 scopus 로고    scopus 로고
    • Discrete one-dimensional quasi-periodic Schrödinger operators with pure point spectrum
    • L.H. ELIASSON, Discrete one-dimensional quasi-periodic Schrödinger operators with pure point spectrum, Acta Math. 179:2 (1997), 153-196.
    • (1997) Acta Math , vol.179 , Issue.2 , pp. 153-196
    • ELIASSON, L.H.1
  • 15
    • 0002234361 scopus 로고
    • Localization for a class of one-dimensional quasi-periodic Schrödinger operators
    • J. FRÖHLICH, T. SPENCER, P. WITTWER, Localization for a class of one-dimensional quasi-periodic Schrödinger operators, Comm. Math. Phys. 132:1 (1990), 5-25.
    • (1990) Comm. Math. Phys , vol.132 , Issue.1 , pp. 5-25
    • FRÖHLICH, J.1    SPENCER, T.2    WITTWER, P.3
  • 16
    • 84968508586 scopus 로고
    • Noncommuting random products
    • H. FURSTENBERG, Noncommuting random products, Trans. Amer. Math. Soc. 108 1963 377-428.
    • (1963) Trans. Amer. Math. Soc , vol.108 , pp. 377-428
    • FURSTENBERG, H.1
  • 17
    • 0035535652 scopus 로고    scopus 로고
    • Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions
    • M. GOLDSTEIN, W. SCHLAG, Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions, Ann. of Math. (2) 154:1 (2001), 155-203.
    • (2001) Ann. of Math. (2) , vol.154 , Issue.1 , pp. 155-203
    • GOLDSTEIN, M.1    SCHLAG, W.2
  • 19
    • 51249181642 scopus 로고
    • Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d'un théorème d'Arnold et de Moser sur le tore de dimension 2
    • M. HERMAN, Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d'un théorème d'Arnold et de Moser sur le tore de dimension 2, Comment. Math. Helv. 58:3 (1983), 453-502.
    • (1983) Comment. Math. Helv , vol.58 , Issue.3 , pp. 453-502
    • HERMAN, M.1
  • 20
    • 0033235963 scopus 로고    scopus 로고
    • Metal-insulator transition for the almost Mathieu operator
    • S. JITOMIRSKAYA, Metal-insulator transition for the almost Mathieu operator, Ann. of Math. (2) 150:3 (1999), 1159-1175.
    • (1999) Ann. of Math. (2) , vol.150 , Issue.3 , pp. 1159-1175
    • JITOMIRSKAYA, S.1
  • 21
    • 0037534540 scopus 로고
    • Exponential dichotomy, rotation number, and linear differential operators with bounded coefficients
    • R. JOHNSON, Exponential dichotomy, rotation number, and linear differential operators with bounded coefficients, J. Differential Equations 61:1 (1986), 54-78.
    • (1986) J. Differential Equations , vol.61 , Issue.1 , pp. 54-78
    • JOHNSON, R.1
  • 22
    • 0000423029 scopus 로고
    • The rotation number for almost periodic potentials
    • R. JOHNSON, J. MOSER, The rotation number for almost periodic potentials, Comm. Math. Phys. 84:3 (1982), 403-438.
    • (1982) Comm. Math. Phys , vol.84 , Issue.3 , pp. 403-438
    • JOHNSON, R.1    MOSER, J.2
  • 23
    • 76349102297 scopus 로고    scopus 로고
    • Reducibility, differentiable rigidity and Lyapunov exponents for quasi-periodic cocycles on T × SL(2,R)
    • preprint
    • R. KRIKORIAN, Reducibility, differentiable rigidity and Lyapunov exponents for quasi-periodic cocycles on T × SL(2,R), preprint.
    • KRIKORIAN, R.1
  • 24
    • 0033074693 scopus 로고    scopus 로고
    • Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators
    • Y. LAST, B. SIMON, Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators, Invent. Math. 135:2 (1999), 329-367.
    • (1999) Invent. Math , vol.135 , Issue.2 , pp. 329-367
    • LAST, Y.1    SIMON, B.2
  • 25
    • 51249181420 scopus 로고
    • An example of a Schroedinger equation with almost periodic potential and nowhere dense spectrum
    • J. MOSER, An example of a Schroedinger equation with almost periodic potential and nowhere dense spectrum, Comment. Math. Helv. 56:2 (1981), 198-224.
    • (1981) Comment. Math. Helv , vol.56 , Issue.2 , pp. 198-224
    • MOSER, J.1
  • 26
    • 51249180848 scopus 로고
    • An extension of a result by Dinaburg and Sinai on quasi-periodic potentials
    • J. MOSER, J. PÖSCHEL, An extension of a result by Dinaburg and Sinai on quasi-periodic potentials, Comment. Math. Helv. 59 (1984), 39-86.
    • (1984) Comment. Math. Helv , vol.59 , pp. 39-86
    • MOSER, J.1    PÖSCHEL, J.2
  • 28
    • 0000763917 scopus 로고
    • Anderson localization for the one-dimensional difference Schrödinger operator with quasi-periodic potentials
    • Y. SINAI, Anderson localization for the one-dimensional difference Schrödinger operator with quasi-periodic potentials, J. Stat. Phys. 46 (1987), 861-909.
    • (1987) J. Stat. Phys , vol.46 , pp. 861-909
    • SINAI, Y.1
  • 29
    • 0001305291 scopus 로고
    • Positive Lyapunov exponents for Schrödinger operators with quasi-periodic potentials
    • E. SORETS, T. SPENCER, Positive Lyapunov exponents for Schrödinger operators with quasi-periodic potentials, Comm. Math. Phys. 142:3 (1991), 543-566.
    • (1991) Comm. Math. Phys , vol.142 , Issue.3 , pp. 543-566
    • SORETS, E.1    SPENCER, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.