-
1
-
-
0009408323
-
A remark on the maximal function associated to an analytic vector field in the plane
-
J. BOURGAIN, A remark on the maximal function associated to an analytic vector field in the plane, London Math. Soc. LNS 137 (1989), 111-132.
-
(1989)
London Math. Soc. LNS
, vol.137
, pp. 111-132
-
-
Bourgain, J.1
-
3
-
-
0001859501
-
Anderson localization for multifrequency quasi-periodic potentials in one dimension
-
V. CHULAEVSKY and Y. SINAI, Anderson localization for multifrequency quasi-periodic potentials in one dimension, Comm. Math. Phys. 125 (1989), 91-121.
-
(1989)
Comm. Math. Phys.
, vol.125
, pp. 91-121
-
-
Chulaevsky, V.1
Sinai, Y.2
-
4
-
-
0001943678
-
Hölder continuity of the integrated density of states for quasiperiodic schrödinger equations and averages of shifts of subharmonic functions
-
to appear
-
M. GOLDSTEIN and W. SCHLAG , Hölder continuity of the integrated density of states for quasiperiodic Schrödinger equations and averages of shifts of subharmonic functions, Ann. of Math., to appear.
-
Ann. of Math.
-
-
Goldstein, M.1
Schlag, W.2
-
5
-
-
51249181642
-
Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d'un théorème d'arnold et de moser sur le tore en dimension 2
-
M. HERMAN, Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d'un théorème d'Arnold et de Moser sur le tore en dimension 2, Comment. Math. Helv. 58 (1983), 453-502.
-
(1983)
Comment. Math. Helv.
, vol.58
, pp. 453-502
-
-
Herman, M.1
-
6
-
-
0033235963
-
Metal-insulator transition for the almost Mathieu operator
-
S. JITOMIRSKAYA, Metal-insulator transition for the almost Mathieu operator, Ann. of Math. 150 (1999), 1159-1175.
-
(1999)
Ann. of Math.
, vol.150
, pp. 1159-1175
-
-
Jitomirskaya, S.1
-
7
-
-
84966260816
-
On the Betti number of real varieties
-
J. MILNOR, On the Betti number of real varieties, Proc. A.M.S. 15 (1964), 275-280.
-
(1964)
Proc. A.M.S.
, vol.15
, pp. 275-280
-
-
Milnor, J.1
-
8
-
-
0001305291
-
Positive Lyapounov exponents for Schrödinger operators with quasi-periodic potential
-
E. SORETS and T. SPENCER, Positive Lyapounov exponents for Schrödinger operators with quasi-periodic potential, Comm. Math. Phys. 142 (1991), 543-566.
-
(1991)
Comm. Math. Phys.
, vol.142
, pp. 543-566
-
-
Sorets, E.1
Spencer, T.2
|