메뉴 건너뛰기




Volumn 17, Issue 3, 2006, Pages 92-107

Elitist and ensemble strategies for cascade generalization

Author keywords

Cascade generalization; Data mining; Decision tree; Elitist strategy; Ensemble method; Voting method

Indexed keywords

DATA MINING; DATA REDUCTION; DATABASE SYSTEMS; MATHEMATICAL MODELS; OPTIMIZATION;

EID: 33846635390     PISSN: 10638016     EISSN: 15338010     Source Type: Journal    
DOI: 10.4018/jdm.2006070105     Document Type: Article
Times cited : (1)

References (37)
  • 1
    • 0032645080 scopus 로고    scopus 로고
    • Anempirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer, E., & Kohavi, R. (1999). Anempirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36(1-2), 105-139.
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 2
    • 84947744224 scopus 로고    scopus 로고
    • Bivariate decision trees
    • J. Komorowski, & J. Zytkow Eds, Principles of data mining and knowledge discovery: , London: Springer Verlag
    • Bioch, J.C., van der Meer, O., & Potharst, R. (1997). Bivariate decision trees. In J. Komorowski, & J. Zytkow (Eds.), Principles of data mining and knowledge discovery: Lecture notes in artificial intelligence (pp. 232-243). London: Springer Verlag.
    • (1997) Lecture notes in artificial intelligence , pp. 232-243
    • Bioch, J.C.1    van der Meer, O.2    Potharst, R.3
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breimaa, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breimaa, L.1
  • 5
    • 0001858087 scopus 로고
    • Multivariate decision trees
    • Bradley, C.E., & Utgoff, P.E. (1995). Multivariate decision trees. Machine Learning, 19(1), 45-77.
    • (1995) Machine Learning , vol.19 , Issue.1 , pp. 45-77
    • Bradley, C.E.1    Utgoff, P.E.2
  • 7
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • Dietterich, T.G. (2000). An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, 40(2), 139-157.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 9
    • 0037117676 scopus 로고    scopus 로고
    • Credit risk assessment using a multicriteria hierarchical discrimination approach: A comparative analysis
    • Doumpos, M., Kosmidou, K., Baourakis, G., & Zopounidis, C. (2002). Credit risk assessment using a multicriteria hierarchical discrimination approach: A comparative analysis. European Journal of Operational Research, 138(2), 392-412.
    • (2002) European Journal of Operational Research , vol.138 , Issue.2 , pp. 392-412
    • Doumpos, M.1    Kosmidou, K.2    Baourakis, G.3    Zopounidis, C.4
  • 12
    • 0034541162 scopus 로고    scopus 로고
    • Cascade generalization
    • Gama, J., & Brazdil, P. (2000). Cascade generalization. Machine Learning, 41 (3), 315-343.
    • (2000) Machine Learning , vol.41 , Issue.3 , pp. 315-343
    • Gama, J.1    Brazdil, P.2
  • 16
    • 2442665617 scopus 로고    scopus 로고
    • Credit rating analysis with support vector machines and neural networks: A market comparative study
    • Huang, Z., Chen, H., Hsu, C., Chen, W., & Wu, S. (2004). Credit rating analysis with support vector machines and neural networks: A market comparative study. Decision Support Systems, 37(4), 543-558.
    • (2004) Decision Support Systems , vol.37 , Issue.4 , pp. 543-558
    • Huang, Z.1    Chen, H.2    Hsu, C.3    Chen, W.4    Wu, S.5
  • 17
    • 2342647085 scopus 로고    scopus 로고
    • Robust linear discriminant trees
    • D. Fisher, & H. Lenz Eds, Learning from data: Artificial intelligence and statistics V: , New York: Springer-Verlag
    • John, G.H. (1996). Robust linear discriminant trees. In D. Fisher, & H. Lenz (Eds.), Learning from data: Artificial intelligence and statistics V: Lecture notes in statistics (pp. 375-385). New York: Springer-Verlag.
    • (1996) Lecture notes in statistics , pp. 375-385
    • John, G.H.1
  • 18
    • 0033277401 scopus 로고    scopus 로고
    • Expert, linear models, and nonlinear models of expert decision making in bankruptcy prediction: A lens model analysis
    • Kim, C.N., & McLeod, R. (1999). Expert, linear models, and nonlinear models of expert decision making in bankruptcy prediction: A lens model analysis. Journal of Management Information Systems, 16(1), 189-206.
    • (1999) Journal of Management Information Systems , vol.16 , Issue.1 , pp. 189-206
    • Kim, C.N.1    McLeod, R.2
  • 21
    • 2442655599 scopus 로고    scopus 로고
    • Neural network techniques for financial performance prediction: Integrating fundamental and technical analysis
    • Lam, M. (2004). Neural network techniques for financial performance prediction: Integrating fundamental and technical analysis. Decision Support Systems, 37(4), 567-581.
    • (2004) Decision Support Systems , vol.37 , Issue.4 , pp. 567-581
    • Lam, M.1
  • 23
    • 2642535941 scopus 로고    scopus 로고
    • An exploration of a set entropy-based hybrid splitting methods for decision tree induction
    • Osei-Bryson, K.-M., & Giles, K. (2004). An exploration of a set entropy-based hybrid splitting methods for decision tree induction. Journal of Database Management, 75(3), 1-17.
    • (2004) Journal of Database Management , vol.75 , Issue.3 , pp. 1-17
    • Osei-Bryson, K.-M.1    Giles, K.2
  • 24
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan, J.R. (1986). Induction of decision trees. Machine Learning, 7(1), 81-106.
    • (1986) Machine Learning , vol.7 , Issue.1 , pp. 81-106
    • Quinlan, J.R.1
  • 27
    • 0035521221 scopus 로고    scopus 로고
    • Bayesian models for early warning of bank failures
    • Sarkar, S., & Sriram, R.S. (2001). Bayesian models for early warning of bank failures. Management Science, 47(11), 1457-1475.
    • (2001) Management Science , vol.47 , Issue.11 , pp. 1457-1475
    • Sarkar, S.1    Sriram, R.S.2
  • 28
    • 13944271875 scopus 로고    scopus 로고
    • Evaluating and tuning predictive data mining models using receiver operating characteristic curves
    • Sinha, A.P., & May, J.H. (2005). Evaluating and tuning predictive data mining models using receiver operating characteristic curves. Journal of Management Information Systems, 27(3), 249-280.
    • (2005) Journal of Management Information Systems , vol.27 , Issue.3 , pp. 249-280
    • Sinha, A.P.1    May, J.H.2
  • 29
    • 0033277431 scopus 로고    scopus 로고
    • Dynamics of modeling in data mining: Interpretive approach to bankruptcy prediction
    • Sung, T.K., Chang, N., & Lee, G. (1999). Dynamics of modeling in data mining: Interpretive approach to bankruptcy prediction. Journal of Management Information Systems, 16(1), 63-85.
    • (1999) Journal of Management Information Systems , vol.16 , Issue.1 , pp. 63-85
    • Sung, T.K.1    Chang, N.2    Lee, G.3
  • 30
    • 84997479670 scopus 로고
    • Managerial applications of neural networks: The case of bank failure predictions
    • Tam, K.Y., & Kiang, M.Y. (1992). Managerial applications of neural networks: The case of bank failure predictions. Management Science, 38(1), 926-947.
    • (1992) Management Science , vol.38 , Issue.1 , pp. 926-947
    • Tam, K.Y.1    Kiang, M.Y.2
  • 35
    • 0040431304 scopus 로고    scopus 로고
    • Data mining for network intrusion detection: A comparison of alternative methods
    • Zhu, D., Premkumar, G., Zhang, X., & Chu, C. (2001). Data mining for network intrusion detection: A comparison of alternative methods. Decision Sciences, 32(4), 635-660.
    • (2001) Decision Sciences , vol.32 , Issue.4 , pp. 635-660
    • Zhu, D.1    Premkumar, G.2    Zhang, X.3    Chu, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.